Midbrain Organoids: A New Tool to Investigate Parkinson's Disease.

Lisa Maria Smits, Jens Christian Schwamborn
Author Information
  1. Lisa Maria Smits: Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg.
  2. Jens Christian Schwamborn: Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg.

Abstract

The study of human 3D cell culture models not only bridges the gap between traditional 2D experiments and animal models, it also addresses processes that cannot be recapitulated by either of these traditional models. Therefore, it offers an opportunity to better understand complex biology including brain development. The brain organoid technology provides a physiologically relevant context, which holds great potential for its application in modeling neurological diseases. Here, we compare different methods to obtain highly specialized structures that resemble specific features of the human midbrain. Regionally patterned neural stem cells (NSCs) were utilized to derive such human midbrain-specific organoids (hMO). The resulting neural tissue exhibited abundant neurons with midbrain dopaminergic neuron identity, as well as astroglia and oligodendrocyte differentiation. Within the midbrain organoids, neurite myelination, and the formation of synaptic connections were observed. Regular neuronal fire patterning and neural network synchronicity were determined by multielectrode array recordings. In addition to electrophysiologically functional neurons producing and secreting dopamine, responsive neuronal subtypes, such as GABAergic and glutamatergic neurons were also detected. In order to model disorders like Parkinson's disease (PD) , midbrain organoids carrying a disease specific mutation were derived and compared to healthy control organoids to investigate relevant neurodegenerative pathophysiology. In this way midbrain-specific organoids constitute a powerful tool for human-specific modeling of neurological disorders with a great potential to be utilized in advanced therapy development.

Keywords

References

  1. Nat Methods. 2015 Jul;12(7):671-8 [PMID: 26005811]
  2. Curr Opin Cell Biol. 2017 Feb;44:36-43 [PMID: 28157638]
  3. PLoS One. 2013;8(3):e59252 [PMID: 23533608]
  4. Sci Transl Med. 2012 Jul 4;4(141):141ra90 [PMID: 22764206]
  5. Cell. 2016 May 19;165(5):1238-1254 [PMID: 27118425]
  6. Ann Transl Med. 2016 Jan;4(2):26 [PMID: 26889479]
  7. Nat Biotechnol. 2009 Mar;27(3):275-80 [PMID: 19252484]
  8. Nat Neurosci. 2014 Aug;17(8):1022-30 [PMID: 25065439]
  9. Proc Natl Acad Sci U S A. 2015 Dec 22;112(51):15672-7 [PMID: 26644564]
  10. Methods Mol Biol. 2011;695:1-15 [PMID: 21042962]
  11. Nat Protoc. 2017 Sep;12(9):1962-1979 [PMID: 28858290]
  12. Science. 2016 May 13;352(6287):816-8 [PMID: 27064148]
  13. Cell Stem Cell. 2016 Dec 1;19(6):703-708 [PMID: 27912091]
  14. Stem Cell Res. 2017 Oct;24:44-50 [PMID: 28826027]
  15. Dev Biol. 2016 Dec 15;420(2):199-209 [PMID: 27402594]
  16. Cell Rep. 2012 Jun 28;1(6):703-14 [PMID: 22813745]
  17. Cell. 2013 Dec 5;155(6):1351-64 [PMID: 24290359]
  18. Semin Pediatr Neurol. 2013 Dec;20(4):230-5 [PMID: 24365570]
  19. Cancer Res. 2016 Apr 15;76(8):2465-77 [PMID: 26896279]
  20. Cell Tissue Res. 2004 Oct;318(1):261-73 [PMID: 15309619]
  21. Nature. 2009 May 14;459(7244):262-5 [PMID: 19329995]
  22. Nat Rev Neurosci. 2017 Oct;18(10):573-584 [PMID: 28878372]
  23. Nat Cell Biol. 2016 Mar;18(3):246-54 [PMID: 26911908]
  24. Front Neurosci. 2018 May 15;12:315 [PMID: 29867326]
  25. Proc Natl Acad Sci U S A. 2010 Sep 7;107(36):15921-6 [PMID: 20798034]
  26. Stem Cells. 2016 Aug;34(8):2115-29 [PMID: 27068685]
  27. Acta Neuropathol Commun. 2018 Jul 2;6(1):54 [PMID: 29961428]
  28. Nature. 2018 Jan 24;553(7689):437-445 [PMID: 29364288]
  29. Development. 2003 Dec;130(24):6013-25 [PMID: 14573522]
  30. Stem Cell Reports. 2014 Feb 20;2(3):323-36 [PMID: 24672755]
  31. Brain. 2013 Aug;136(Pt 8):2419-31 [PMID: 23884810]
  32. Sci Rep. 2017 Aug 21;7(1):9003 [PMID: 28827786]
  33. Cell. 2016 Jun 16;165(7):1586-1597 [PMID: 27315476]
  34. Nature. 2014 Nov 13;515(7526):274-8 [PMID: 25307057]
  35. Nat Protoc. 2014 Oct;9(10):2329-40 [PMID: 25188634]
  36. Cell Stem Cell. 2011 Mar 4;8(3):267-80 [PMID: 21362567]
  37. Nat Neurosci. 2006 Oct;9(10):1231-3 [PMID: 16980962]
  38. Lab Chip. 2018 Oct 9;18(20):3172-3183 [PMID: 30204191]
  39. Front Cell Neurosci. 2013 Oct 29;7:196 [PMID: 24194699]
  40. Prog Brain Res. 2007;160:189-208 [PMID: 17499115]
  41. Nat Neurosci. 2010 May;13(5):541-550 [PMID: 20418875]
  42. Science. 2018 Jul 27;361(6400): [PMID: 29930089]
  43. Development. 2017 Mar 15;144(6):968-975 [PMID: 28292843]
  44. Exp Neurol. 2017 Dec;298(Pt B):148-161 [PMID: 28987461]
  45. Trends Mol Med. 2018 Dec;24(12):982-990 [PMID: 30377071]
  46. Proc Natl Acad Sci U S A. 2013 Dec 10;110(50):20284-9 [PMID: 24277810]
  47. Neuron. 2017 Apr 19;94(2):278-293.e9 [PMID: 28426964]
  48. Mol Neurobiol. 2004 Jun;29(3):243-59 [PMID: 15181237]
  49. Nature. 2013 Sep 19;501(7467):373-9 [PMID: 23995685]
  50. Exp Neurol. 2013 Oct;248:541-5 [PMID: 23933574]
  51. Cell Rep. 2016 Jun 14;15(11):2411-26 [PMID: 27264186]
  52. Neurology. 2007 Apr 3;68(14):1141-3 [PMID: 17215492]
  53. Bioessays. 2015 Oct;37(10):1139-48 [PMID: 26252541]
  54. Development. 1997 Apr;124(7):1313-22 [PMID: 9118802]
  55. Cell Stem Cell. 2014 Nov 6;15(5):653-65 [PMID: 25517469]
  56. Mol Neurodegener. 2016 Dec 9;11(1):75 [PMID: 27938410]
  57. Front Synaptic Neurosci. 2018 Jul 10;10:20 [PMID: 30042672]
  58. Cell. 2013 Jul 18;154(2):274-84 [PMID: 23870119]
  59. Nat Methods. 2018 Aug;15(8):631-639 [PMID: 30038414]
  60. Nature. 2011 Nov 06;480(7378):547-51 [PMID: 22056989]
  61. Cell Rep. 2016 May 31;15(9):1866-75 [PMID: 27210754]
  62. Stem Cell Reports. 2014 Mar 06;2(3):337-50 [PMID: 24672756]
  63. Crit Rev Biomed Eng. 2011;39(3):201-40 [PMID: 21967303]
  64. Cell Stem Cell. 2016 Aug 4;19(2):258-265 [PMID: 27162029]
  65. Dev Biol. 2007 Apr 15;304(2):447-54 [PMID: 17331494]
  66. Science. 2014 Jul 18;345(6194):1247125 [PMID: 25035496]
  67. Development. 2015 Sep 15;142(18):3113-25 [PMID: 26395140]
  68. Nat Methods. 2018 Jan 3;15(1):27-29 [PMID: 29298289]
  69. Cell Stem Cell. 2016 Aug 4;19(2):145-146 [PMID: 27494668]
  70. Cell Tissue Res. 2020 Dec;382(3):463-476 [PMID: 32737576]
  71. Genes Dev. 2012 May 1;26(9):891-907 [PMID: 22549954]
  72. Cell Stem Cell. 2013 Dec 5;13(6):691-705 [PMID: 24315443]
  73. Semin Cell Dev Biol. 2019 Nov;95:93-97 [PMID: 30904636]
  74. NPJ Parkinsons Dis. 2019 Apr 5;5:5 [PMID: 30963107]
  75. Neuron. 2010 Jun 10;66(5):646-61 [PMID: 20547124]
  76. Lab Chip. 2018 Mar 13;18(6):851-860 [PMID: 29437173]
  77. Proc Natl Acad Sci U S A. 2017 Apr 11;114(15):3999-4004 [PMID: 28348207]
  78. Nature. 2016 May 11;534(7606):267-71 [PMID: 27279226]
  79. PLoS One. 2016 Sep 13;11(9):e0161969 [PMID: 27622770]
  80. Cell Stem Cell. 2016 May 5;18(5):559-60 [PMID: 27152436]
  81. EMBO Mol Med. 2012 May;4(5):380-95 [PMID: 22407749]
  82. Cell Stem Cell. 2016 May 5;18(5):591-6 [PMID: 27038591]
  83. Neuropathol Appl Neurobiol. 2011 Dec;37(7):791-802 [PMID: 21696416]
  84. PLoS One. 2012;7(11):e49150 [PMID: 23145103]
  85. Trends Neurosci. 2003 Nov;26(11):578-80 [PMID: 14585596]
  86. Front Cell Neurosci. 2018 Nov 09;12:413 [PMID: 30483063]
  87. Nat Med. 2016 Nov;22(11):1358-1367 [PMID: 27668937]
  88. Nat Neurosci. 2015 Sep;18(9):1196-8 [PMID: 26308978]
  89. Cell Stem Cell. 2016 Jun 2;18(6):736-748 [PMID: 27257762]
  90. Nat Commun. 2018 Oct 9;9(1):4167 [PMID: 30301888]
  91. Trends Mol Med. 2017 May;23(5):393-410 [PMID: 28341301]
  92. Curr Neurol Neurosci Rep. 2012 Jun;12(3):237-42 [PMID: 22538490]
  93. Stem Cell Reports. 2017 May 9;8(5):1144-1154 [PMID: 28416282]
  94. Sci Rep. 2018 Feb 26;8(1):3627 [PMID: 29483620]
  95. EMBO J. 2017 May 15;36(10):1316-1329 [PMID: 28283582]
  96. Mov Disord. 2013 Jan;28(1):41-50 [PMID: 22791686]
  97. Transl Neurodegener. 2016 Jun 01;5:11 [PMID: 27257478]
  98. Adv Sci (Weinh). 2018 Nov 20;6(1):1800927 [PMID: 30643711]
  99. Science. 2015 May 8;348(6235):648-60 [PMID: 25954001]
  100. Stem Cells Dev. 2014 Jul 1;23(13):1535-47 [PMID: 24576173]
  101. Stem Cells Dev. 2018 Jul 15;27(14):968-975 [PMID: 29415619]
  102. Front Neural Circuits. 2016 May 24;10:40 [PMID: 27252626]
  103. Cell Stem Cell. 2016 Aug 4;19(2):248-257 [PMID: 27476966]
  104. Science. 2017 Sep 22;357(6357):1255-1261 [PMID: 28882997]
  105. J Neurol Sci. 1973 Dec;20(4):415-55 [PMID: 4272516]
  106. J Comp Neurol. 2019 May 15;527(9):1527-1540 [PMID: 30680728]
  107. J Neurosci. 2011 Dec 14;31(50):18391-400 [PMID: 22171041]
  108. J Exp Med. 2016 Apr 4;213(4):499-515 [PMID: 27001749]
  109. Neuron. 2016 May 18;90(4):675-91 [PMID: 27196972]
  110. Cell Stem Cell. 2013 Mar 7;12(3):354-67 [PMID: 23472874]
  111. Nat Biotechnol. 2018 Jun;36(5):432-441 [PMID: 29658944]
  112. Stem Cell Reports. 2019 Mar 5;12(3):518-531 [PMID: 30799274]
  113. Prog Neurobiol. 2005 Feb;75(2):109-24 [PMID: 15784302]
  114. Mol Biol Cell. 2018 Nov 26;29(24):2913-2921 [PMID: 30475098]
  115. Neurobiol Aging. 2004 Jan;25(1):19-23 [PMID: 14675725]
  116. Nat Rev Genet. 2014 Sep;15(9):625-39 [PMID: 25069490]
  117. Cell Mol Life Sci. 2015 Feb;72(4):773-97 [PMID: 25403878]
  118. Nat Neurosci. 2015 Nov;18(11):1539-1545 [PMID: 26505565]

Word Cloud

Created with Highcharts 10.0.0midbrainorganoidshumanmodelsneuralneuronsdiseasecelltraditionalalsobraindevelopmentorganoidrelevantgreatpotentialmodelingneurologicalspecificstemutilizedmidbrain-specificneuronaldisordersParkinson'sstudy3Dculturebridgesgap2DexperimentsanimaladdressesprocessesrecapitulatedeitherThereforeoffersopportunitybetterunderstandcomplexbiologyincludingtechnologyprovidesphysiologicallycontextholdsapplicationdiseasescomparedifferentmethodsobtainhighlyspecializedstructuresresemblefeaturesRegionallypatternedcellsNSCsderivehMOresultingtissueexhibitedabundantdopaminergicneuronidentitywellastrogliaoligodendrocytedifferentiationWithinneuritemyelinationformationsynapticconnectionsobservedRegularfirepatterningnetworksynchronicitydeterminedmultielectrodearrayrecordingsadditionelectrophysiologicallyfunctionalproducingsecretingdopamineresponsivesubtypesGABAergicglutamatergicdetectedordermodellikePDcarryingmutationderivedcomparedhealthycontrolinvestigateneurodegenerativepathophysiologywayconstitutepowerfultoolhuman-specificadvancedtherapyMidbrainOrganoids:NewToolInvestigateDiseaseParkinson’sselforganizationresearch

Similar Articles

Cited By