Effort-Based Decision-Making and Gross Motor Performance: Are They Linked?

Simone V Gill, Samuel J Abplanalp, Laura Keegan, Daniel Fulford
Author Information
  1. Simone V Gill: Department of Occupational Therapy, Boston University, Boston, MA 02215, USA.
  2. Samuel J Abplanalp: Department of Occupational Therapy, Boston University, Boston, MA 02215, USA.
  3. Laura Keegan: Department of Occupational Therapy, Boston University, Boston, MA 02215, USA.
  4. Daniel Fulford: Department of Occupational Therapy, Boston University, Boston, MA 02215, USA.

Abstract

The purpose of this study was to investigate the relationship between effort-based decision making and gross motor performance. Effort-based decision making was measured using a modified version of the Effort Expenditure for Rewards Task (EEfRT), in which participants pressed a button on a keyboard to fill a bar on a screen for monetary reward. Participants received monetary rewards that were commensurate with the level of effort that they were willing to expend. Gross motor performance was measured with a walking task, in which participants matched their steps to the beat of an audio metronome; they walked to metronome beats that were slower and also faster than their normal walking pace. We hypothesized that increased effort during the effort-based decision making task would be paired with an increase in steps taken per minute during the gross motor task. However, the results of this study indicated a lack of a statistically significant relationship between the effort-based decision making task and the gross motor task. Planning rather than decision-making may have been the cognitive construct that governed our gross motor task. These findings can be beneficial when thinking about potential interventions for populations who experience deficits in motor performance and cognition as well as for understanding the relationship between both cognitive and motor performance in healthy adults.

Keywords

References

  1. Elife. 2017 Feb 21;6: [PMID: 28219479]
  2. Neurosci Biobehav Rev. 2011 Jan;35(3):537-55 [PMID: 20603146]
  3. J Neurosci. 2010 Nov 24;30(47):15778-89 [PMID: 21106817]
  4. Osteoarthritis Cartilage. 2017 Jan;25(1):60-66 [PMID: 27492464]
  5. Gait Posture. 2017 Mar;53:121-126 [PMID: 28157572]
  6. PLoS One. 2015 May 26;10(5):e0127894 [PMID: 26011538]
  7. J Neurosci. 2010 May 26;30(21):7434-46 [PMID: 20505110]
  8. PLoS One. 2009 Aug 12;4(8):e6598 [PMID: 19672310]
  9. Nat Rev Neurosci. 2009 May;10(5):345-59 [PMID: 19352402]
  10. J Neurophysiol. 2012 Aug;108(4):999-1009 [PMID: 22623483]
  11. Arch Phys Med Rehabil. 2012 Apr;93(4):728-30 [PMID: 22300647]
  12. J Neurophysiol. 2010 Mar;103(3):1179-94 [PMID: 20032247]
  13. Res Dev Disabil. 2014 Jan;35(1):46-53 [PMID: 24230986]
  14. Front Aging Neurosci. 2019 Sep 24;11:265 [PMID: 31607899]
  15. Res Dev Disabil. 2014 Jul;35(7):1425-32 [PMID: 24751905]
  16. Psychiatry Res. 2019 Jan;271:46-51 [PMID: 30465981]
  17. Nat Neurosci. 2002 Nov;5(11):1226-35 [PMID: 12404008]
  18. Annu Rev Neurosci. 2002;25:189-220 [PMID: 12052908]
  19. Behav Brain Sci. 2004 Feb;27(1):3-24; discussion 24-78 [PMID: 15481943]
  20. Nat Rev Neurosci. 2008 Jun;9(6):467-79 [PMID: 18464792]
  21. J Appl Biomech. 2016 Aug;32(4):379-87 [PMID: 26958743]
  22. J Geriatr Phys Ther. 2020 Jan/Mar;43(1):42-52 [PMID: 30720555]
  23. Science. 2009 May 8;324(5928):759-64 [PMID: 19423820]
  24. Curr Biol. 2016 Jul 25;26(14):1929-34 [PMID: 27374338]
  25. J Neurosci. 2013 Jan 30;33(5):2121-36 [PMID: 23365248]
  26. Nat Rev Neurosci. 2008 Apr;9(4):292-303 [PMID: 18319728]
  27. Psychol Sci. 2003 Mar;14(2):106-12 [PMID: 12661670]
  28. Biol Psychiatry. 2005 Oct 15;58(8):597-604 [PMID: 16095567]
  29. Q J Exp Psychol (Hove). 2008 Oct;61(10):1487-95 [PMID: 18609383]
  30. J Neurosci. 2007 Nov 28;27(48):13082-91 [PMID: 18045902]
  31. Proc Natl Acad Sci U S A. 2018 May 29;115(22):E5233-E5242 [PMID: 29760060]
  32. Nat Rev Neurosci. 2004 Jul;5(7):532-46 [PMID: 15208695]
  33. Aust Occup Ther J. 2011 Oct;58(5):386-9 [PMID: 21957924]
  34. J Musculoskelet Neuronal Interact. 2015 Mar;15(1):103-8 [PMID: 25730658]
  35. J Neurophysiol. 2019 Jul 1;122(1):378-388 [PMID: 31141440]
  36. Nat Neurosci. 2004 Sep;7(9):907-15 [PMID: 15332089]
  37. Psychol Assess. 2018 Sep;30(9):1237-1248 [PMID: 29620381]
  38. Nat Rev Neurosci. 2018 Sep;19(9):519-534 [PMID: 30089888]
  39. J Neurosci. 2011 Jan 19;31(3):913-21 [PMID: 21248116]
  40. Surg Obes Relat Dis. 2016 Jun;12(5):1080-1085 [PMID: 27320220]
  41. Biol Psychiatry. 2015 Dec 1;78(11):747-53 [PMID: 26049208]
  42. J Neurosci. 2003 Jan 15;23(2):632-51 [PMID: 12533623]
  43. J Neurophysiol. 2020 Jun 1;123(6):2373-2381 [PMID: 32374197]

Grants

  1. R03 AR066344/NIAMS NIH HHS

Word Cloud

Created with Highcharts 10.0.0motortaskdecisionmakingperformancegrossrelationshipeffort-basedstudymeasuredparticipantsmonetaryeffortGrosswalkingstepsmetronomecognitivepurposeinvestigateEffort-basedusingmodifiedversionEffortExpenditureRewardsTaskEEfRTpressedbuttonkeyboardfillbarscreenrewardParticipantsreceivedrewardscommensuratelevelwillingexpendmatchedbeataudiowalkedbeatssloweralsofasternormalpacehypothesizedincreasedpairedincreasetakenperminuteHoweverresultsindicatedlackstatisticallysignificantPlanningratherdecision-makingmayconstructgovernedfindingscanbeneficialthinkingpotentialinterventionspopulationsexperiencedeficitscognitionwellunderstandinghealthyadultsEffort-BasedDecision-MakingMotorPerformance:Linked?cognition

Similar Articles

Cited By