Genetic diversity, antimicrobial resistance, and virulence genes of thermophilic Campylobacter isolated from broiler production chain.

Tassiana Ramires, Mauricéia Greici de Oliveira, Natalie Rauber Kleinubing, Simone de Fátima Rauber Würfel, Marcia Magalhães Mata, Mariana Almeida Iglesias, Graciela Volz Lopes, Odir Antônio Dellagostin, Wladimir Padilha da Silva
Author Information
  1. Tassiana Ramires: Departamento de Ciência e Tecnologia Agroindustrial, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil. ORCID
  2. Mauricéia Greici de Oliveira: Departamento de Ciência e Tecnologia Agroindustrial, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil.
  3. Natalie Rauber Kleinubing: Departamento de Ciência e Tecnologia Agroindustrial, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil.
  4. Simone de Fátima Rauber Würfel: Centro de Biotecnologia, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil.
  5. Marcia Magalhães Mata: Departamento de Ciência e Tecnologia Agroindustrial, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil.
  6. Mariana Almeida Iglesias: Centro de Biotecnologia, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil.
  7. Graciela Volz Lopes: Departamento de Ciência e Tecnologia Agroindustrial, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil.
  8. Odir Antônio Dellagostin: Centro de Biotecnologia, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil.
  9. Wladimir Padilha da Silva: Departamento de Ciência e Tecnologia Agroindustrial, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil. wladimir.padilha2011@gmail.com.

Abstract

The aim of this study was to investigate the prevalence of thermophilic Campylobacter in the broiler production chain of southern Brazil, by evaluating broiler farms and slaughter line samples, and to determine the genetic diversity, antimicrobial resistance, and virulence genes of the isolates. Of the 140 samples investigated in this study, 75 (53.6%) were positive for thermophilic Campylobacter, and all isolates were identified by phenotypic and molecular tests as C. jejuni. The resistance to nalidixic acid was the most common (74%), followed by resistance to enrofloxacin (67.3%) and ciprofloxacin (37.1%). However, there was no resistance to the macrolides tested which are recommended for the treatment of human campylobacteriosis. The PFGE showed that the isolates were grouped in eight macrorestriction patterns (P1 to P8). A representative isolate of each macrorestriction pattern was investigated for the presence of virulence genes and all isolates carried the cadF, ciaB, cdtA, cdtB, cdtC, and flaA genes. The dnaJ gene was detected in 87.5% (7/8) of the isolates. The flhA and racR genes were detected in 75% (6/8), while the pldA gene was present in 62.5% (5/8) and the wlaN gene in 25% (2/8). The presence of C. jejuni in broiler farms and in the slaughterhouse is a hazard to consumer given that this pathogen can be maintained throughout the broiler production chain and contaminates the final product. Moreover, the presence of the major virulence genes in the isolates demonstrates that they have the ability to develop campylobacteriosis in humans.

Keywords

References

  1. Int J Food Microbiol. 2015 Oct 1;210:24-32 [PMID: 26092707]
  2. Food Microbiol. 2015 Jun;48:99-108 [PMID: 25790997]
  3. Appl Environ Microbiol. 2001 Jun;67(6):2636-40 [PMID: 11375174]
  4. Microbiology (Reading). 2003 Jan;149(Pt 1):153-65 [PMID: 12576589]
  5. Adv Appl Microbiol. 2018;103:1-47 [PMID: 29914655]
  6. Mol Microbiol. 1999 May;32(4):691-701 [PMID: 10361274]
  7. Clin Infect Dis. 2007 Mar 1;44(5):701-3 [PMID: 17278063]
  8. Crit Rev Microbiol. 2006 Oct-Dec;32(4):227-48 [PMID: 17123907]
  9. Int J Food Microbiol. 2006 Apr 25;108(2):226-32 [PMID: 16478636]
  10. J Appl Microbiol. 2005;99(5):1043-50 [PMID: 16238734]
  11. Int J Food Microbiol. 2007 Jul 15;117(3):237-57 [PMID: 17368847]
  12. J Med Microbiol. 2003 Apr;52(Pt 4):345-348 [PMID: 12676874]
  13. Prev Vet Med. 2013 Aug 1;111(1-2):100-11 [PMID: 23706344]
  14. Nat Rev Microbiol. 2017 Feb;15(2):109-128 [PMID: 28045107]
  15. J Glob Antimicrob Resist. 2019 Mar;16:76-80 [PMID: 30267925]
  16. Vet Microbiol. 2010 Jul 29;144(1-2):133-9 [PMID: 20116182]
  17. Int J Food Microbiol. 2008 Jan 15;121(1):106-11 [PMID: 18061296]
  18. Int J Food Microbiol. 2016 Jun 2;226:26-32 [PMID: 27016637]
  19. Am J Clin Pathol. 1966 Apr;45(4):493-6 [PMID: 5325707]
  20. Vet Microbiol. 2006 Mar 10;113(1-2):123-9 [PMID: 16300911]
  21. J Clin Microbiol. 2004 Feb;42(2):700-6 [PMID: 14766839]
  22. Food Microbiol. 2017 Aug;65:185-192 [PMID: 28400001]
  23. Biomed Res Int. 2018 Dec 23;2018:7943786 [PMID: 30671471]
  24. J Appl Microbiol. 2016 Feb;120(2):469-77 [PMID: 26599136]
  25. Infect Immun. 2004 Jul;72(7):3769-76 [PMID: 15213117]
  26. Mol Microbiol. 2000 Aug;37(3):501-14 [PMID: 10931344]
  27. J Infect Dis. 2001 Jun 1;183(11):1607-16 [PMID: 11343209]
  28. EFSA J. 2019 Dec 11;17(12):e05926 [PMID: 32626211]
  29. Appl Environ Microbiol. 2006 Jan;72(1):645-52 [PMID: 16391102]
  30. EFSA J. 2020 Mar 03;18(3):e06007 [PMID: 32874244]
  31. J Microbiol Methods. 2013 Oct;95(1):57-67 [PMID: 23827324]
  32. Infect Immun. 1998 Aug;66(8):3666-72 [PMID: 9673247]
  33. J Antimicrob Chemother. 2007 Apr;59(4):775-8 [PMID: 17392353]
  34. J Microbiol Methods. 2004 Jul;58(1):39-48 [PMID: 15177902]
  35. EFSA J. 2018 Dec 12;16(12):e05500 [PMID: 32625785]
  36. J Clin Microbiol. 2001 May;39(5):1889-94 [PMID: 11326009]
  37. Prev Vet Med. 2016 Aug 1;130:137-45 [PMID: 27435657]
  38. J Clin Microbiol. 1999 Mar;37(3):510-7 [PMID: 9986804]
  39. Vet Microbiol. 2003 Oct 30;96(3):267-76 [PMID: 14559174]
  40. Br Poult Sci. 2007 Apr;48(2):127-32 [PMID: 17453803]
  41. J Food Prot. 2006 Apr;69(4):768-74 [PMID: 16629018]
  42. Poult Sci. 2013 Feb;92(2):462-7 [PMID: 23300314]
  43. Gut. 2019 Feb;68(2):289-300 [PMID: 30377189]
  44. Food Microbiol. 2015 Sep;50:97-101 [PMID: 25998821]
  45. Microb Pathog. 2018 Jan;114:213-218 [PMID: 29174703]
  46. PLoS One. 2016 Jun 03;11(6):e0156938 [PMID: 27258021]
  47. Appl Environ Microbiol. 2006 Aug;72(8):5463-8 [PMID: 16885299]
  48. J Bacteriol. 1999 May;181(10):3298-302 [PMID: 10322038]
  49. mBio. 2014 Jul 01;5(4):e01364-14 [PMID: 24987092]
  50. Can J Microbiol. 2019 Apr;65(4):253-260 [PMID: 30532987]
  51. Acta Vet Hung. 2010 Mar;58(1):19-28 [PMID: 20159735]

Grants

  1. Finance Code 001/Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
  2. 309101/2016-6/Conselho Nacional de Desenvolvimento Científico e Tecnológico
  3. 17/2551-0000956-8/Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul

MeSH Term

Abattoirs
Animals
Anti-Bacterial Agents
Brazil
Campylobacter
Campylobacter Infections
Chickens
Drug Resistance, Bacterial
Genes, Bacterial
Genetic Variation
Phenotype
Prevalence
Virulence Factors

Chemicals

Anti-Bacterial Agents
Virulence Factors

Word Cloud

Created with Highcharts 10.0.0genesresistanceisolatesbroilervirulencethermophilicCampylobacterproductionchainfarmsCjejunipresencegenestudysamplesdiversityantimicrobialinvestigatedcampylobacteriosisPFGEmacrorestrictiondetected5%aiminvestigateprevalencesouthernBrazilevaluatingslaughterlinedeterminegenetic14075536%positiveidentifiedphenotypicmoleculartestsnalidixicacidcommon74%followedenrofloxacin673%ciprofloxacin371%HowevermacrolidestestedrecommendedtreatmenthumanshowedgroupedeightpatternsP1P8representativeisolatepatterncarriedcadFciaBcdtAcdtBcdtCflaAdnaJ877/8flhAracR75%6/8pldApresent625/8wlaN25%2/8slaughterhousehazardconsumergivenpathogencanmaintainedthroughoutcontaminatesfinalproductMoreovermajordemonstratesabilitydevelophumansGeneticisolatedAntimicrobialBroilerVirulence

Similar Articles

Cited By