GLOBAL AND TARGETED PROFILING OF GTP-BINDING PROTEINS IN BIOLOGICAL SAMPLES BY MASS SPECTROMETRY.

Ming Huang, Yinsheng Wang
Author Information
  1. Ming Huang: Environmental Toxicology Graduate Program, University of California Riverside, Riverside, CA.
  2. Yinsheng Wang: Environmental Toxicology Graduate Program, University of California Riverside, Riverside, CA.

Abstract

GTP-binding proteins are among the most important enzyme families that are involved in a plethora of biological processes. However, owing to the enormous diversity of the nucleotide-binding protein family, comprehensive analyses of the expression level, structure, activity, and regulatory mechanisms of GTP-binding proteins remain challenging with the use of conventional approaches. The many advances in mass spectrometry (MS) instrumentation and data acquisition methods, together with a variety of enrichment approaches in sample preparation, render MS a powerful tool for the comprehensive characterizations of the activities and expression levels of various GTP-binding proteins. We review herein the recent developments in the application of MS-based techniques, together with general and widely used affinity enrichment approaches, for the proteome-wide and targeted capture, identification, and quantification of GTP-binding proteins. The working principles, advantages, and limitations of various strategies for profiling the expression level, activity, posttranslational modifications, and interactome of GTP-binding proteins are discussed. It can be envisaged that future applications of MS-based proteomics will lead to a better understanding about the roles of GTP-binding proteins in different biological processes and human diseases. © 2020 John Wiley & Sons Ltd. Mass Spec Rev.

Keywords

References

  1. Curr Biol. 2013 May 20;23(10):R431-5 [PMID: 23701681]
  2. J Am Chem Soc. 2014 Jun 18;136(24):8669-76 [PMID: 24836640]
  3. Sci Rep. 2016 Dec 07;6:38615 [PMID: 27924931]
  4. Science. 2013 Mar 15;339(6125):1328-1331 [PMID: 23371551]
  5. Annu Rev Biochem. 2008;77:383-414 [PMID: 18366325]
  6. Int J Mol Sci. 2015 Dec 02;16(12):28566-81 [PMID: 26633379]
  7. J Chromatogr B Analyt Technol Biomed Life Sci. 2018 Aug 15;1092:268-271 [PMID: 29933219]
  8. Biochemistry. 2002 Apr 23;41(16):5067-74 [PMID: 11955054]
  9. Cell Mol Life Sci. 2006 Feb;63(3):255-67 [PMID: 16378247]
  10. RNA. 2012 Jul;18(7):1421-32 [PMID: 22589334]
  11. Mol Biosyst. 2011 Jan;7(1):67-73 [PMID: 21107478]
  12. Nat Rev Mol Cell Biol. 2012 Feb 08;13(3):183-94 [PMID: 22314400]
  13. Science. 2004 Sep 10;305(5690):1615-9 [PMID: 15361624]
  14. Mol Cell. 2016 Jan 21;61(2):187-98 [PMID: 26774281]
  15. Bioorg Med Chem. 2012 Jan 15;20(2):554-70 [PMID: 21778062]
  16. Curr Opin Pharmacol. 2012 Aug;12(4):458-63 [PMID: 22401931]
  17. Small GTPases. 2015 Oct 2;6(4):202-11 [PMID: 26399387]
  18. J Mol Biol. 2016 Nov 20;428(23):4723-4735 [PMID: 27751724]
  19. G3 (Bethesda). 2019 Jun 5;9(6):1869-1880 [PMID: 30975701]
  20. PLoS One. 2013 Dec 16;8(12):e81758 [PMID: 24358126]
  21. Nat Commun. 2019 Jan 15;10(1):224 [PMID: 30644389]
  22. Cancer Res. 2018 Sep 15;78(18):5431-5445 [PMID: 30072397]
  23. FEBS Lett. 2013 Jun 27;587(13):1870-7 [PMID: 23684650]
  24. J Proteome Res. 2015 Feb 6;14(2):967-76 [PMID: 25569337]
  25. Anal Chem. 2019 Dec 17;91(24):15365-15369 [PMID: 31765128]
  26. Genome Biol Evol. 2014 Dec 04;7(1):57-70 [PMID: 25480683]
  27. Chem Rev. 2011 Oct 12;111(10):6341-58 [PMID: 21919527]
  28. Anal Chem. 2013 Mar 19;85(6):3198-206 [PMID: 23413923]
  29. Cell. 2018 Jan 25;172(3):578-589.e17 [PMID: 29373830]
  30. Plant Physiol. 2008 Aug;147(4):1516-26 [PMID: 18678743]
  31. Physiol Rev. 2001 Jan;81(1):153-208 [PMID: 11152757]
  32. ACS Med Chem Lett. 2016 Nov 30;8(1):61-66 [PMID: 28105276]
  33. Mol Pharmacol. 2018 Apr;93(4):251-258 [PMID: 29298813]
  34. J Org Chem. 2007 Nov 23;72(24):9291-7 [PMID: 17979291]
  35. Nat Commun. 2015 Jul 16;6:7773 [PMID: 26178622]
  36. EMBO J. 2015 Nov 12;34(22):2840-61 [PMID: 26471730]
  37. Nature. 2003 Mar 13;422(6928):198-207 [PMID: 12634793]
  38. Proteomics. 2016 Aug;16(15-16):2106-17 [PMID: 27197958]
  39. Chembiochem. 2007 Apr 16;8(6):595-8 [PMID: 17330901]
  40. J Am Chem Soc. 2013 Mar 27;135(12):4676-9 [PMID: 23473570]
  41. Nature. 1990 Nov 8;348(6297):125-32 [PMID: 2122258]
  42. Mol Cell Proteomics. 2013 Sep;12(9):2481-96 [PMID: 23722185]
  43. Nat Chem. 2019 Jun;11(6):552-561 [PMID: 30936521]
  44. Anal Chem. 2014 May 6;86(9):4550-8 [PMID: 24689502]
  45. Nat Cell Biol. 2020 Jan;22(1):120-134 [PMID: 31871319]
  46. Anal Chem. 2018 Dec 18;90(24):14551-14560 [PMID: 30431262]
  47. Elife. 2019 Jul 11;8: [PMID: 31294692]
  48. Biochemistry. 2019 Dec 31;58(52):5320-5328 [PMID: 31095371]
  49. Mol Syst Biol. 2008;4:222 [PMID: 18854821]
  50. Anal Chem. 2019 Oct 1;91(19):12307-12314 [PMID: 31460748]
  51. Proc Natl Acad Sci U S A. 2004 Mar 2;101(9):2800-5 [PMID: 14973186]
  52. PLoS One. 2010 Nov 02;5(11):e13799 [PMID: 21082023]
  53. Biopolymers. 2016 Aug;105(8):463-75 [PMID: 26971860]
  54. Curr Biol. 2018 Apr 23;28(8):R471-R486 [PMID: 29689231]
  55. Angew Chem Int Ed Engl. 2014 Jan 3;53(1):199-204 [PMID: 24259466]
  56. Mol Cell Proteomics. 2017 Jan;16(1):73-85 [PMID: 27852748]
  57. Elife. 2017 Nov 10;6: [PMID: 29125462]
  58. Dev Cell. 2014 Nov 10;31(3):358-373 [PMID: 25453831]
  59. Proteomics. 2017 May;17(9): [PMID: 28252257]
  60. Proteomics. 2012 Apr;12(8):1111-21 [PMID: 22577012]
  61. Sci Rep. 2015 Nov 19;5:16869 [PMID: 26581825]
  62. Plant Cell. 2002;14 Suppl:S375-88 [PMID: 12045289]
  63. J Biol Chem. 2000 Aug 18;275(33):25299-307 [PMID: 10843989]
  64. J Biol Chem. 1996 Mar 8;271(10):5289-92 [PMID: 8621375]
  65. Science. 2016 Feb 5;351(6273):604-8 [PMID: 26841430]
  66. Anal Chem. 2018 Dec 18;90(24):14339-14346 [PMID: 30433760]
  67. Biochemistry. 2019 Aug 6;58(31):3396-3405 [PMID: 31306575]
  68. Sci Rep. 2019 Feb 8;9(1):1718 [PMID: 30737458]
  69. Cell. 2000 Oct 13;103(2):227-38 [PMID: 11057896]
  70. Nat Rev Mol Cell Biol. 2012 Jan 11;13(2):75-88 [PMID: 22233676]
  71. Trends Cell Biol. 1996 Mar;6(3):81-5 [PMID: 15157482]
  72. J Proteome Res. 2017 Mar 3;16(3):1216-1227 [PMID: 28102076]
  73. PLoS One. 2016 Feb 12;11(2):e0148340 [PMID: 26871441]
  74. Sci Rep. 2017 Jul 13;7(1):5272 [PMID: 28706196]
  75. Mol Cell Proteomics. 2012 Jun;11(6):O111.016717 [PMID: 22261725]
  76. Nature. 2019 Nov;575(7781):217-223 [PMID: 31666701]
  77. Sci STKE. 2004 Sep 07;2004(250):RE13 [PMID: 15367757]
  78. Mol Syst Biol. 2018 Aug 13;14(8):e8126 [PMID: 30104418]
  79. J Biol Chem. 1995 Jan 13;270(2):503-6 [PMID: 7822269]
  80. Proc Natl Acad Sci U S A. 2004 Aug 24;101(34):12479-84 [PMID: 15308774]
  81. Physiol Rev. 2013 Jan;93(1):269-309 [PMID: 23303910]
  82. Anal Chem. 2016 Oct 4;88(19):9773-9779 [PMID: 27626823]
  83. Nat Rev Drug Discov. 2002 Mar;1(3):187-97 [PMID: 12120503]
  84. Proc Natl Acad Sci U S A. 2018 Apr 17;115(16):4140-4145 [PMID: 29610327]
  85. Anal Chem. 2007 Aug 1;79(15):5547-56 [PMID: 17602667]
  86. Biochem Biophys Res Commun. 2014 Mar 21;445(4):683-93 [PMID: 24556311]
  87. Dev Biol. 2004 Jan 1;265(1):23-32 [PMID: 14697350]
  88. Cell Div. 2009 Aug 26;4:18 [PMID: 19709431]
  89. Nature. 2006 Apr 20;440(7087):1069-72 [PMID: 16547516]
  90. Mol Cell Proteomics. 2017 Apr;16(4 suppl 1):S54-S64 [PMID: 28040698]
  91. Anal Chem. 2013 Dec 17;85(24):11952-9 [PMID: 24279456]
  92. Mol Cell Proteomics. 2013 Feb;12(2):343-55 [PMID: 23161513]
  93. Biochim Biophys Acta. 2014 Feb;1838(2):674-81 [PMID: 24071592]
  94. Physiol Rev. 2011 Jan;91(1):119-49 [PMID: 21248164]
  95. J Proteome Res. 2018 Jan 5;17(1):63-75 [PMID: 29164889]
  96. Chem Soc Rev. 2016 Sep 21;45(18):4929-52 [PMID: 27396271]
  97. Proteomics. 2016 Aug;16(15-16):2146-59 [PMID: 27145088]
  98. Annu Rev Cell Dev Biol. 2005;21:247-69 [PMID: 16212495]
  99. FASEB J. 2017 Aug;31(8):3622-3635 [PMID: 28432198]
  100. Mol Cell Proteomics. 2014 Apr;13(4):1065-75 [PMID: 24520089]
  101. Chembiochem. 2017 Feb 1;18(3):324-330 [PMID: 27925692]
  102. Proteomes. 2019 Sep 27;7(4): [PMID: 31569819]
  103. Small GTPases. 2016 Apr 2;7(2):93-106 [PMID: 26918858]
  104. Small GTPases. 2016 Jul 2;7(3):123-38 [PMID: 27104658]
  105. J Med Chem. 2020 Jan 9;63(1):52-65 [PMID: 31820981]
  106. Nat Chem Biol. 2009 Apr;5(4):227-35 [PMID: 19219049]
  107. J Cell Sci. 2005 Mar 1;118(Pt 5):843-6 [PMID: 15731001]
  108. Cell. 2019 May 16;177(5):1232-1242.e11 [PMID: 31080064]
  109. J Cell Sci. 2001 Aug;114(Pt 15):2723-33 [PMID: 11683407]
  110. Proc Natl Acad Sci U S A. 1987 Apr;84(7):1814-8 [PMID: 3104905]
  111. Curr Biol. 1996 Feb 1;6(2):211-2 [PMID: 8673468]
  112. Methods Mol Biol. 2017;1647:1-18 [PMID: 28808992]
  113. Cancer Discov. 2016 Mar;6(3):316-29 [PMID: 26739882]
  114. Int J Mol Sci. 2018 Oct 23;19(11): [PMID: 30360518]
  115. Genes Cancer. 2011 Mar;2(3):344-58 [PMID: 21779504]
  116. Nat Biotechnol. 2007 Sep;25(9):1035-44 [PMID: 17721511]
  117. Cell. 2017 Jun 29;170(1):17-33 [PMID: 28666118]
  118. Cell. 2007 Jun 1;129(5):865-77 [PMID: 17540168]
  119. Anal Chem. 2020 May 5;92(9):6756-6763 [PMID: 32237738]
  120. Science. 2004 May 21;304(5674):1158-60 [PMID: 15087508]
  121. Mol Cell Proteomics. 2014 Sep;13(9):2513-26 [PMID: 24942700]
  122. Chem Rev. 2016 Jun 8;116(11):6607-65 [PMID: 26815308]
  123. Chem Sci. 2019 Jul 15;10(34):8025-8034 [PMID: 31853358]
  124. Anal Chem. 2014 Nov 4;86(21):10700-7 [PMID: 25301106]
  125. J Cell Biol. 2012 Mar 19;196(6):801-10 [PMID: 22412018]
  126. Nat Biotechnol. 2002 Aug;20(8):805-9 [PMID: 12091914]
  127. J Immunol. 2006 Jan 1;176(1):640-51 [PMID: 16365460]
  128. Biochemistry. 2009 Jun 9;48(22):4858-70 [PMID: 19388626]
  129. Biochem Soc Trans. 2012 Dec 1;40(6):1398-403 [PMID: 23176488]
  130. Methods Mol Biol. 2016;1410:207-21 [PMID: 26867746]
  131. J Proteome Res. 2012 Jul 6;11(7):3908-13 [PMID: 22671702]
  132. Redox Biol. 2019 Sep;26:101282 [PMID: 31386964]
  133. Anal Biochem. 2008 Oct 15;381(2):258-66 [PMID: 18638444]
  134. Anal Chem. 2019 May 7;91(9):6233-6241 [PMID: 30943010]
  135. PLoS One. 2015 Aug 06;10(8):e0134317 [PMID: 26247207]
  136. Cell. 1995 Jan 27;80(2):249-57 [PMID: 7834744]
  137. Anal Chem. 2013 Aug 6;85(15):7478-86 [PMID: 23841533]
  138. ACS Cent Sci. 2018 Jan 24;4(1):71-80 [PMID: 29392178]
  139. Mol Cell Biochem. 1994 Nov 9;140(1):1-22 [PMID: 7877593]
  140. Mol Cell Proteomics. 2012 Nov;11(11):1475-88 [PMID: 22865924]
  141. Genome Biol. 2003;4(4):212 [PMID: 12702202]
  142. Anal Chem. 2015 Feb 17;87(4):2178-86 [PMID: 25616024]
  143. Front Pharmacol. 2018 Apr 09;9:353 [PMID: 29686618]
  144. Biochemistry. 2007 Jan 16;46(2):350-8 [PMID: 17209545]
  145. EMBO J. 2016 Feb 15;35(4):443-57 [PMID: 26783363]
  146. Structure. 2017 Sep 5;25(9):1442-1448.e3 [PMID: 28781083]
  147. Proc Natl Acad Sci U S A. 2014 Jun 17;111(24):8895-900 [PMID: 24889603]
  148. Trends Cell Biol. 2006 Oct;16(10):522-9 [PMID: 16949823]
  149. Front Microbiol. 2018 Dec 21;9:3078 [PMID: 30622517]
  150. J Proteomics. 2015 Jan 15;113:388-99 [PMID: 25449833]
  151. Mol Neurodegener. 2018 Feb 13;13(1):8 [PMID: 29439717]
  152. J Am Chem Soc. 2016 Oct 12;138(40):13187-13196 [PMID: 27665622]
  153. Biochemistry. 2015 May 19;54(19):3024-36 [PMID: 25905789]
  154. Biochemistry. 2017 Oct 10;56(40):5405-5416 [PMID: 28880079]
  155. Chem Rev. 2013 Apr 10;113(4):2343-94 [PMID: 23438204]
  156. ACS Chem Biol. 2014 Mar 21;9(3):592-605 [PMID: 24437719]
  157. ChemMedChem. 2009 Jul;4(7):1182-8 [PMID: 19437476]

Grants

  1. R01 CA210072/NCI NIH HHS
  2. T32 ES018827/NIEHS NIH HHS

MeSH Term

Affinity Labels
Animals
Biotinylation
Electrophoresis
GTP-Binding Proteins
Guanine
Humans
Mass Spectrometry
Protein Processing, Post-Translational
Proteomics

Chemicals

Affinity Labels
Guanine
GTP-Binding Proteins

Word Cloud

Created with Highcharts 10.0.0GTP-bindingproteinsexpressionapproachesproteomicsbiologicalprocessesproteincomprehensivelevelactivityMStogetherenrichmentvariousMS-basedtargetedprofilingposttranslationalmodificationsamongimportantenzymefamiliesinvolvedplethoraHoweverowingenormousdiversitynucleotide-bindingfamilyanalysesstructureregulatorymechanismsremainchallenginguseconventionalmanyadvancesmassspectrometryinstrumentationdataacquisitionmethodsvarietysamplepreparationrenderpowerfultoolcharacterizationsactivitieslevelsreviewhereinrecentdevelopmentsapplicationtechniquesgeneralwidelyusedaffinityproteome-widecaptureidentificationquantificationworkingprinciplesadvantageslimitationsstrategiesinteractomediscussedcanenvisagedfutureapplicationswillleadbetterunderstandingrolesdifferenthumandiseases©2020JohnWiley&SonsLtdMassSpecRevGLOBALANDTARGETEDPROFILINGOFGTP-BINDINGPROTEINSINBIOLOGICALSAMPLESBYMASSSPECTROMETRYactivity-basedshotgunsmallGTPases

Similar Articles

Cited By (3)