Harmful Algal Bloom Toxicity in Tadpoles.

Robin C Su, Casey M Meyers, Emily A Warner, Jessica A Garcia, Jeanine M Refsnider, Apurva Lad, Joshua D Breidenbach, Nikolai Modyanov, Deepak Malhotra, Steven T Haller, David J Kennedy
Author Information
  1. Robin C Su: Department of Medicine, The University of Toledo College of Medicine and Life Sciences, 3000 Arlington Avenue, Toledo, OH 43614, USA. ORCID
  2. Casey M Meyers: Department of Biology, Wittenberg University, Springfield, OH 45504, USA. ORCID
  3. Emily A Warner: Department of Medicine, The University of Toledo College of Medicine and Life Sciences, 3000 Arlington Avenue, Toledo, OH 43614, USA.
  4. Jessica A Garcia: Department of Environmental Sciences, The University of Toledo, Toledo, OH 43606, USA.
  5. Jeanine M Refsnider: Department of Environmental Sciences, The University of Toledo, Toledo, OH 43606, USA.
  6. Apurva Lad: Department of Medicine, The University of Toledo College of Medicine and Life Sciences, 3000 Arlington Avenue, Toledo, OH 43614, USA.
  7. Joshua D Breidenbach: Department of Medicine, The University of Toledo College of Medicine and Life Sciences, 3000 Arlington Avenue, Toledo, OH 43614, USA. ORCID
  8. Nikolai Modyanov: Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA.
  9. Deepak Malhotra: Department of Medicine, The University of Toledo College of Medicine and Life Sciences, 3000 Arlington Avenue, Toledo, OH 43614, USA.
  10. Steven T Haller: Department of Medicine, The University of Toledo College of Medicine and Life Sciences, 3000 Arlington Avenue, Toledo, OH 43614, USA. ORCID
  11. David J Kennedy: Department of Medicine, The University of Toledo College of Medicine and Life Sciences, 3000 Arlington Avenue, Toledo, OH 43614, USA. ORCID

Abstract

Harmful algal blooms (HAB) have become a major health concern worldwide, not just to humans that consume and recreate on contaminated waters, but also to the fauna that inhabit the environments surrounding affected areas. HABs contain heterotrophic bacteria, cyanobacterial lipopolysaccharide, and cyanobacterial toxins such as microcystins, that can cause severe toxicity in many aquatic species as well as bioaccumulation within various organs. Thus, the possibility of trophic transference of this toxin through the food chain has potentially important health implications for other organisms in the related food web. While some species have developed adaptions to attenuate the toxic effects of HAB toxins, there are still numerous species that remain vulnerable, including (American bullfrog) tadpoles. In the current study we demonstrate that acute, short-term exposure of tadpoles to HAB toxins containing 1 µg/L (1 nmol/L) of total microcystins for only 7 days results in significant liver and intestinal toxicity within tadpoles. Exposed tadpoles had increased intestinal diameter, decreased intestinal fold heights, and a constant number of intestinal folds, indicating pathological intestinal distension, similar to what is seen in various disease processes, such as toxic megacolon. HAB-toxin-exposed tadpoles also demonstrated hepatocyte hypertrophy with increased hepatocyte binucleation consistent with carcinogenic and oxidative processes within the liver. Both livers and intestines of HAB-toxin-exposed tadpoles demonstrated significant increases in protein carbonylation consistent with oxidative stress and damage. These findings demonstrate that short-term exposure to HAB toxins, including microcystins, can have significant adverse effects in amphibian populations. This acute, short-term toxicity highlights the need to evaluate the influence HAB toxins may have on other vulnerable species within the food web and how those may ultimately also impact human health.

Keywords

References

  1. Circ Res. 1980 Jul;47(1):1-9 [PMID: 7379260]
  2. PLoS One. 2010 Sep 10;5(9): [PMID: 20844747]
  3. Int J Mol Sci. 2018 Aug 29;19(9): [PMID: 30158457]
  4. Sci Rep. 2018 Mar 20;8(1):4913 [PMID: 29559706]
  5. Nat Methods. 2012 Jun 28;9(7):676-82 [PMID: 22743772]
  6. Environ Toxicol Chem. 2006 Jan;25(1):72-86 [PMID: 16494227]
  7. Toxins (Basel). 2019 Jun 25;11(6): [PMID: 31242640]
  8. Toxicon. 2015 Sep 15;104:26-33 [PMID: 26210502]
  9. BMC Bioinformatics. 2017 Nov 29;18(1):529 [PMID: 29187165]
  10. Environ Health Perspect. 2001 Jul;109(7):663-8 [PMID: 11485863]
  11. Int J Mol Sci. 2010 Jan 21;11(1):268-87 [PMID: 20162015]
  12. Toxicol Pathol. 2012 Oct;40(7):971-94 [PMID: 22723046]
  13. Comp Biochem Physiol C Toxicol Pharmacol. 2005 Mar-Apr;140(3-4):309-20 [PMID: 15946636]
  14. J Immunol. 2009 Feb 15;182(4):1836-45 [PMID: 19201835]
  15. J Hazard Mater. 2013 May 15;252-253:382-9 [PMID: 23548922]
  16. J Environ Manage. 2018 May 1;213:520-529 [PMID: 29472035]
  17. Toxins (Basel). 2019 Aug 23;11(9): [PMID: 31450746]
  18. Cell Death Dis. 2017 May 18;8(5):e2805 [PMID: 28518148]
  19. J Cancer Res Clin Oncol. 1992;118(6):420-4 [PMID: 1618889]
  20. Environ Sci Technol. 2017 Jun 20;51(12):6745-6755 [PMID: 28535339]
  21. Endocrinology. 2017 Jun 1;158(6):1623-1633 [PMID: 28323943]
  22. Toxicon. 2008 Feb;51(2):262-9 [PMID: 17997465]
  23. Mayo Clin Proc. 2009 Dec;84(12):1126-9 [PMID: 19955249]
  24. Aquat Toxicol. 2000 Jun 1;49(3):189-198 [PMID: 10856605]
  25. Environ Sci Technol. 2020 Apr 21;54(8):4769-4780 [PMID: 32186187]
  26. Aquat Toxicol. 2014 Oct;155:360-7 [PMID: 25105566]
  27. Toxins (Basel). 2018 Aug 06;10(8): [PMID: 30082615]
  28. Chemosphere. 2016 Aug;157:166-73 [PMID: 27219292]
  29. Toxicon. 2010 Feb-Mar;55(2-3):514-22 [PMID: 19825385]
  30. Fish Shellfish Immunol. 2014 Apr;37(2):278-85 [PMID: 24594009]
  31. Environ Health Perspect. 1997 Nov;105(11):1196-203 [PMID: 9370513]
  32. Ecotoxicol Environ Saf. 2018 Dec 30;166:311-319 [PMID: 30278392]
  33. PLoS One. 2018 Nov 21;13(11):e0206821 [PMID: 30462664]
  34. Viruses. 2018 Jul 17;10(7): [PMID: 30018186]
  35. Aquat Toxicol. 2013 Mar 15;128-129:25-33 [PMID: 23266398]
  36. Environ Pollut. 2005 Apr;134(3):423-30 [PMID: 15620587]
  37. J Chromatogr A. 2018 Oct 26;1573:66-77 [PMID: 30201162]
  38. Toxicon. 2001 Oct;39(10):1461-70 [PMID: 11478953]
  39. Gastroenterology. 2006 Apr;130(5):1480-91 [PMID: 16678561]
  40. Toxicology. 2002 Dec 27;181-182:441-6 [PMID: 12505349]
  41. Aquat Toxicol. 2006 Jun 10;78(1):32-41 [PMID: 16540185]
  42. Toxicol Rep. 2015 Jan 27;2:289-296 [PMID: 28962362]
  43. Digestion. 2005;72(2-3):146-9 [PMID: 16172551]
  44. Interdiscip Toxicol. 2009 Jun;2(2):36-41 [PMID: 21217843]
  45. Arch Toxicol. 2017 Feb;91(2):621-650 [PMID: 28042640]
  46. Mass Spectrom Rev. 2014 Mar-Apr;33(2):79-97 [PMID: 23832618]
  47. J Zhejiang Univ Sci B. 2007 Feb;8(2):116-20 [PMID: 17266187]
  48. Toxicol Pathol. 2004 Jul-Aug;32(4):393-401 [PMID: 15307212]
  49. Toxins (Basel). 2020 Apr 19;12(4): [PMID: 32325806]
  50. Mutat Res. 2008 Mar 29;652(1):65-71 [PMID: 18282792]
  51. N Engl J Med. 1998 Mar 26;338(13):873-8 [PMID: 9516222]

Grants

  1. 4241/Ohio Department of Higher Education
  2. 2018OH548B/Ohio Water Resources Center

MeSH Term

Animals
Food Chain
Gastrointestinal Tract
Harmful Algal Bloom
Larva
Liver
Microcystins
Protein Carbonylation
Rana catesbeiana
Time Factors
Toxicity Tests, Acute
Water Microbiology

Chemicals

Microcystins

Word Cloud

Created with Highcharts 10.0.0tadpolesHABtoxinsintestinalmicrocystinstoxicityspecieswithinhealthalsofoodshort-termsignificantliverHarmfulalgalcyanobacterialcanvariouswebtoxiceffectsvulnerableincludingdemonstrateacuteexposure1increasedprocessesHAB-toxin-exposeddemonstratedhepatocyteconsistentoxidativeintestinesmaybloomsbecomemajorconcernworldwidejusthumansconsumerecreatecontaminatedwatersfaunainhabitenvironmentssurroundingaffectedareasHABscontainheterotrophicbacterialipopolysaccharidecauseseveremanyaquaticwellbioaccumulationorgansThuspossibilitytrophictransferencetoxinchainpotentiallyimportantimplicationsorganismsrelateddevelopedadaptionsattenuatestillnumerousremainAmericanbullfrogcurrentstudycontainingµg/Lnmol/Ltotal7daysresultsExposeddiameterdecreasedfoldheightsconstantnumberfoldsindicatingpathologicaldistensionsimilarseendiseasemegacolonhypertrophybinucleationcarcinogenicliversincreasesproteincarbonylationstressdamagefindingsadverseamphibianpopulationshighlightsneedevaluateinfluenceultimatelyimpacthumanAlgalBloomToxicityTadpolesharmfulbloom

Similar Articles

Cited By