Phytomicrobiome Coordination Signals Hold Potential for Climate Change-Resilient Agriculture.

Dongmei Lyu, Rachel Backer, Sowmyalakshmi Subramanian, Donald L Smith
Author Information
  1. Dongmei Lyu: Department of Plant Science, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC, Canada.
  2. Rachel Backer: Department of Plant Science, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC, Canada.
  3. Sowmyalakshmi Subramanian: Department of Plant Science, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC, Canada.
  4. Donald L Smith: Department of Plant Science, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC, Canada.

Abstract

A plant growing under natural conditions is always associated with a substantial, diverse, and well-orchestrated community of microbes-the phytomicrobiome. The phytomicrobiome genome is larger and more fluid than that of the plant. The microbes of the phytomicrobiome assist the plant in nutrient uptake, pathogen control, stress management, and overall growth and development. At least some of this is facilitated by the production of signal compounds, both plant-to-microbe and microbe back to the plant. This is best characterized in the legume nitrogen fixing and mycorrhizal symbioses. More recently lipo-chitooligosaccharide (LCO) and thuricin 17, two microbe-to-plant signals, have been shown to regulate stress responses in a wide range of plant species. While thuricin 17 production is constitutive, LCO signals are only produced in response to a signal from the plant. We discuss how some signal compounds will only be discovered when root-associated microbes are exposed to appropriate plant-to-microbe signals (positive regulation), and this might only happen under specific conditions, such as abiotic stress, while others may only be produced in the absence of a particular plant-to-microbe signal molecule (negative regulation). Some phytomicrobiome members only elicit effects in a specific crop species (specialists), while other phytomicrobiome members elicit effects in a wide range of crop species (generalists). We propose that some specialists could exhibit generalist activity when exposed to signals from the correct plant species. The use of microbe-to-plant signals can enhance crop stress tolerance and could result in more climate change resilient agricultural systems.

Keywords

References

  1. Trends Plant Sci. 2014 Dec;19(12):757-63 [PMID: 25239777]
  2. Syst Appl Microbiol. 2018 Nov;41(6):629-640 [PMID: 30055880]
  3. Microbiol Res. 2014 Jan 20;169(1):30-9 [PMID: 24095256]
  4. Trends Plant Sci. 2019 Mar;24(3):187-189 [PMID: 30738790]
  5. Plant Sci. 2018 Feb;267:102-111 [PMID: 29362088]
  6. Plant Sci. 2019 Jul;284:135-142 [PMID: 31084866]
  7. PLoS Biol. 2015 Aug 18;13(8):e1002226 [PMID: 26284777]
  8. Front Plant Sci. 2015 Sep 14;6:722 [PMID: 26442036]
  9. Front Plant Sci. 2016 Aug 30;7:1314 [PMID: 27625672]
  10. Science. 2015 Aug 21;349(6250):860-4 [PMID: 26184915]
  11. Plant Signal Behav. 2016 Sep;11(9):e1212799 [PMID: 27454159]
  12. Front Microbiol. 2016 Dec 07;7:1971 [PMID: 28003808]
  13. J Plant Physiol. 2007 Oct;164(10):1391-3 [PMID: 17485139]
  14. Nature. 2006 Mar 30;440(7084):623-30 [PMID: 16572163]
  15. Annu Rev Microbiol. 2019 Sep 8;73:69-88 [PMID: 31091418]
  16. Plant Methods. 2015 Mar 04;11:14 [PMID: 25767559]
  17. Nature. 2017 Mar 23;543(7646):513-518 [PMID: 28297714]
  18. ISME J. 2014 May;8(5):1147-51 [PMID: 24304675]
  19. Trends Ecol Evol. 2016 Jun;31(6):440-452 [PMID: 26993667]
  20. PLoS One. 2012;7(2):e31571 [PMID: 22348109]
  21. Trends Microbiol. 2015 Oct;23(10):606-617 [PMID: 26422463]
  22. Front Plant Sci. 2015 Oct 30;6:909 [PMID: 26579159]
  23. Plant Cell. 2017 Oct;29(10):2319-2335 [PMID: 28855333]
  24. J Plant Physiol. 2008 Sep 8;165(13):1342-51 [PMID: 18190997]
  25. J Exp Bot. 2016 May;67(11):3189-203 [PMID: 27053719]
  26. Front Plant Sci. 2017 Apr 24;8:611 [PMID: 28484479]
  27. Nature. 2015 May 14;521(7551):173-179 [PMID: 25945739]
  28. Pest Manag Sci. 2019 Sep;75(9):2353-2359 [PMID: 30843315]
  29. World J Microbiol Biotechnol. 2017 Aug;33(8):155 [PMID: 28695465]
  30. Planta. 2003 Jan;216(3):437-45 [PMID: 12520335]
  31. J Appl Microbiol. 2006 Mar;100(3):545-54 [PMID: 16478494]
  32. Microbiol Res. 2002;157(3):157-60 [PMID: 12398283]
  33. Trends Plant Sci. 2012 Aug;17(8):478-86 [PMID: 22564542]
  34. Cold Spring Harb Perspect Biol. 2014 Apr 01;6(4):a016188 [PMID: 24691961]
  35. Genome Biol. 2013 Jun 25;14(6):209 [PMID: 23805896]
  36. Ann Bot. 2008 Jan;101(1):19-23 [PMID: 17981879]
  37. Front Plant Sci. 2017 Oct 23;8:1768 [PMID: 29109733]
  38. Front Microbiol. 2018 Sep 11;9:2119 [PMID: 30254615]
  39. Front Plant Sci. 2018 Oct 18;9:1494 [PMID: 30405656]
  40. Genes (Basel). 2018 Feb 27;9(3): [PMID: 29495432]
  41. Phytopathology. 2008 Oct;98(10):1118-25 [PMID: 18943458]
  42. Trends Plant Sci. 2005 Sep;10(9):411-2 [PMID: 16023397]
  43. PLoS Biol. 2017 Mar 28;15(3):e2001793 [PMID: 28350798]
  44. Biol Open. 2018 Feb 22;7(2): [PMID: 29472284]
  45. Front Plant Sci. 2018 Oct 23;9:1473 [PMID: 30405652]
  46. Trends Plant Sci. 2019 Mar;24(3):194-198 [PMID: 30670324]
  47. FEMS Microbiol Lett. 2006 Feb;255(1):27-32 [PMID: 16436058]
  48. J Biol Chem. 1956 Aug;221(2):593-607 [PMID: 13357454]
  49. Cold Spring Harb Perspect Biol. 2014 Feb 01;6(2): [PMID: 24492707]
  50. Mol Plant Microbe Interact. 2015 Mar;28(3):212-7 [PMID: 25514681]
  51. Int Microbiol. 2013 Sep;16(3):133-43 [PMID: 24568029]
  52. PLoS One. 2016 Aug 25;11(8):e0160660 [PMID: 27560934]
  53. Fungal Biol Biotechnol. 2016 Sep 29;3:7 [PMID: 28955466]
  54. Proc Natl Acad Sci U S A. 1999 Oct 26;96(22):12275-80 [PMID: 10535912]
  55. Front Plant Sci. 2018 Sep 03;9:1247 [PMID: 30319665]
  56. Front Plant Sci. 2015 Sep 09;6:709 [PMID: 26442023]

Word Cloud

Created with Highcharts 10.0.0plantphytomicrobiomestresssignalsignalsspeciescropcompoundsplant-to-microbeconditionsmicrobesproductionLCOthuricin17microbe-to-plantwiderangeproducedexposedregulationspecificmemberseliciteffectsspecialistsgrowingnaturalalwaysassociatedsubstantialdiversewell-orchestratedcommunitymicrobes-thegenomelargerfluidassistnutrientuptakepathogencontrolmanagementoverallgrowthdevelopmentleastfacilitatedmicrobebackbestcharacterizedlegumenitrogenfixingmycorrhizalsymbiosesrecentlylipo-chitooligosaccharidetwoshownregulateresponsesconstitutiveresponsediscusswilldiscoveredroot-associatedappropriatepositivemighthappenabioticothersmayabsenceparticularmoleculenegativegeneralistsproposeexhibitgeneralistactivitycorrectusecanenhancetoleranceresultclimatechangeresilientagriculturalsystemsPhytomicrobiomeCoordinationSignalsHoldPotentialClimateChange-ResilientAgriculturebiostimulantsphytomicrobiomresiliance

Similar Articles

Cited By