Comparison of cricket diet with peanut-based and milk-based diets in the recovery from protein malnutrition in mice and the impact on growth, metabolism and immune function.

Rachel S Bergmans, Maria Nikodemova, Valerie J Stull, Ashley Rapp, Kristen M C Malecki
Author Information
  1. Rachel S Bergmans: Department of Psychiatry, University of Michigan, Ann Arbor, Michigan, United States of America. ORCID
  2. Maria Nikodemova: Department of Population Health Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.
  3. Valerie J Stull: Global Health Institute, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.
  4. Ashley Rapp: Department of Epidemiology, University of Michigan, Ann Arbor, Michigan, United States of America.
  5. Kristen M C Malecki: Department of Population Health Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.

Abstract

Some evidence suggests that edible insects could be used to treat malnutrition following protein deficiency. However, additional studies are needed to better assess the potential of edible insects as a therapeutic food supplement and their long-term impact on recovery from malnutrition. The goals of this study were to investigate the effectiveness of a cricket-based diet in recovery from protein-malnutrition in early life, and to compare cricket protein to more traditional sources used for food fortification and supplementation. Protein-malnutrition was induced by administration of an isocaloric hypoprotein diet (5% protein calories) in young male mice for two weeks during puberty, followed by a six-week recovery period using a cricket-, peanut- or milk-based diet. We examined the impact of protein-malnutrition and subsequent recovery on body weight, growth and select biomarkers of inflammation and metabolism. Protein-malnutrition resulted in growth retardation, downregulation of inflammatory markers in spleen tissue, decreased levels of serum triglycerides, and elevated serum levels of leptin and adiponectin. The cricket-based diet performed equally well as the peanut- and milk-based diets in body weight recovery, but there were differences in immune and metabolic markers among the different recovery diets. Results suggest edible crickets may provide an alternative nutrient-dense protein source with relatively low environmental demands for combating the effects of early-life malnutrition compared to more traditional supplementation and fortification sources. Additional investigations are needed to examine the short and long term impacts of different recovery diets on metabolism and immune function.

References

  1. Nutr Neurosci. 2003 Dec;6(6):361-7 [PMID: 14744040]
  2. Curr Opin Clin Nutr Metab Care. 2020 May;23(3):228-231 [PMID: 32073413]
  3. Twin Res. 2001 Oct;4(5):293-8 [PMID: 11869479]
  4. Food Nutr Bull. 2009 Sep;30(3 Suppl):S434-63 [PMID: 19998866]
  5. Adv Nutr. 2015 Sep;6(5):623-4 [PMID: 27352453]
  6. Semin Nephrol. 2013 Jan;33(1):2-13 [PMID: 23374889]
  7. Ann Epidemiol. 2013 Jun;23(6):314-20 [PMID: 23608305]
  8. Endocrinol Diabetes Nutr. 2017 Apr;64(4):204-210 [PMID: 28417875]
  9. J Allergy Clin Immunol. 2005 Jun;115(6):1119-28; quiz 1129 [PMID: 15940121]
  10. Horm Behav. 2013 Jul;64(2):187-94 [PMID: 23998663]
  11. PLoS One. 2010 Dec 29;5(12):e14445 [PMID: 21206900]
  12. Cochrane Database Syst Rev. 2013 Jun 21;(6):CD009584 [PMID: 23794237]
  13. Proc Nutr Soc. 2001 Aug;60(3):349-56 [PMID: 11681809]
  14. J Clin Endocrinol Metab. 2016 May;101(5):2047-55 [PMID: 26967691]
  15. Ecol Food Nutr. 2015;54(3):200-8 [PMID: 25401273]
  16. Braz J Med Biol Res. 2002 May;35(5):617-22 [PMID: 12011949]
  17. Proc Nutr Soc. 1993 Feb;52(1):69-76 [PMID: 8493278]
  18. Rheumatol Int. 2018 Sep;38(9):1671-1677 [PMID: 29947997]
  19. Am J Clin Nutr. 2015 Apr;101(4):742-51 [PMID: 25833972]
  20. Food Nutr Bull. 2009 Sep;30(3 Suppl):S343-404 [PMID: 19998864]
  21. Diabetologia. 2010 Nov;53(11):2401-5 [PMID: 20703446]
  22. Pediatrics. 2017 Apr;139(Suppl 1):S72-S84 [PMID: 28562250]
  23. Sci Adv. 2019 Dec 13;5(12):eaba2946 [PMID: 31853503]
  24. Food Nutr Bull. 2015 Mar;36(1 Suppl):S15-23 [PMID: 25902610]
  25. Cytokine. 2007 Nov;40(2):105-14 [PMID: 17950615]
  26. Food Nutr Bull. 2010 Jun;31(2):273-4; author reply 274-5 [PMID: 20707232]
  27. Acta Physiol Scand. 2000 Aug;169(4):325-31 [PMID: 10951124]
  28. Proc Nutr Soc. 2016 Aug;75(3):294-305 [PMID: 26908196]
  29. Nutr Diabetes. 2014 Sep 01;4:e133 [PMID: 25177913]
  30. Proc Natl Acad Sci U S A. 2010 Sep 28;107(39):16881-6 [PMID: 20837515]
  31. Nutrients. 2019 Oct 16;11(10): [PMID: 31623146]
  32. Lipids Health Dis. 2016 May 17;15:96 [PMID: 27189377]
  33. Int J Obes (Lond). 2008 Oct;32(10):1585-94 [PMID: 18725894]
  34. Nutrients. 2018 Oct 06;10(10): [PMID: 30301233]
  35. Lancet. 2019 Nov 16;394(10211):1836-1878 [PMID: 31733928]
  36. Sci Rep. 2018 Jul 17;8(1):10762 [PMID: 30018370]
  37. Eur J Clin Nutr. 2016 Mar;70(3):285-91 [PMID: 26373961]
  38. Nutrients. 2015 Jun 26;7(7):5156-76 [PMID: 26132992]
  39. J Clin Invest. 1996 Mar 1;97(5):1344-7 [PMID: 8636448]
  40. Int J Biol Sci. 2008;4(6):422-32 [PMID: 19043606]
  41. J Cardiovasc Risk. 1996 Apr;3(2):213-9 [PMID: 8836866]
  42. Food Sci Nutr. 2019 Apr 22;7(5):1807-1815 [PMID: 31139394]
  43. Am J Clin Nutr. 2003 Sep;78(3 Suppl):660S-663S [PMID: 12936963]
  44. Food Chem. 2020 May 1;311:126022 [PMID: 31869637]
  45. J Nutr. 2003 Nov;133(11 Suppl 2):3879S-3885S [PMID: 14672285]
  46. Sci Rep. 2018 Jan 18;8(1):1043 [PMID: 29348480]
  47. J Nutr. 1998 Feb;128(2):224-33 [PMID: 9446848]
  48. Science. 2010 Feb 12;327(5967):812-8 [PMID: 20110467]
  49. CMAJ. 2005 Aug 2;173(3):279-86 [PMID: 16076825]
  50. Trends Immunol. 2016 Jun;37(6):386-398 [PMID: 27237815]
  51. J Nutr. 2000 Mar;130(3):514-21 [PMID: 10702578]
  52. Methods. 2001 Dec;25(4):402-8 [PMID: 11846609]
  53. Food Nutr Bull. 2009 Sep;30(3 Suppl):S265-6 [PMID: 19998862]
  54. Int Immunol. 2005 Jan;17(1):1-14 [PMID: 15585605]
  55. PLoS One. 2016 Aug 22;11(8):e0157919 [PMID: 27548305]
  56. BMC Nutr. 2020 Apr 2;6:7 [PMID: 32266077]
  57. Semin Pediatr Infect Dis. 2004 Jul;15(3):125-9 [PMID: 15480958]
  58. Lancet Planet Health. 2018 Jan;2(1):e2-e3 [PMID: 29615205]
  59. Am J Physiol. 1999 Nov;277(5):E855-61 [PMID: 10567012]
  60. Obes Facts. 2019;12(6):590-605 [PMID: 31698359]
  61. East Afr Med J. 1994 Feb;71(2):77-83 [PMID: 7925048]

Grants

  1. UL1 TR002373/NCATS NIH HHS
  2. T32 HD007014/NICHD NIH HHS
  3. UL1 TR000427/NCATS NIH HHS
  4. P2C HD047873/NICHD NIH HHS

MeSH Term

Animals
Arachis
Body Weight
Cytokines
Diet
Edible Insects
Gryllidae
Male
Mice
Milk
Protein Deficiency

Chemicals

Cytokines

Word Cloud

Created with Highcharts 10.0.0recoveryproteindietmalnutritiondietsedibleimpactmilk-basedgrowthmetabolismimmuneinsectsusedneededfoodcricket-basedprotein-malnutritioncrickettraditionalsourcesfortificationsupplementationProtein-malnutritionmicepeanut-bodyweightmarkerslevelsserumdifferentfunctionevidencesuggeststreatfollowingdeficiencyHoweveradditionalstudiesbetterassesspotentialtherapeuticsupplementlong-termgoalsstudyinvestigateeffectivenessearlylifecompareinducedadministrationisocalorichypoprotein5%caloriesyoungmaletwoweekspubertyfollowedsix-weekperiodusingcricket-examinedsubsequentselectbiomarkersinflammationresultedretardationdownregulationinflammatoryspleentissuedecreasedtriglycerideselevatedleptinadiponectinperformedequallywelldifferencesmetabolicamongResultssuggestcricketsmayprovidealternativenutrient-densesourcerelativelylowenvironmentaldemandscombatingeffectsearly-lifecomparedAdditionalinvestigationsexamineshortlongtermimpactsComparisonpeanut-based

Similar Articles

Cited By