Evolving Navigation, Robotics, and Augmented Reality in Minimally Invasive Spine Surgery.

Ibrahim Hussain, Murat Cosar, Sertac Kirnaz, Franziska A Schmidt, Christoph Wipplinger, Taylor Wong, Roger Härtl
Author Information
  1. Ibrahim Hussain: Weill Cornell Medical College, New York-Presbyterian Hospital, New York, NY, USA.
  2. Murat Cosar: Weill Cornell Medical College, New York-Presbyterian Hospital, New York, NY, USA. ORCID
  3. Sertac Kirnaz: Weill Cornell Medical College, New York-Presbyterian Hospital, New York, NY, USA. ORCID
  4. Franziska A Schmidt: Weill Cornell Medical College, New York-Presbyterian Hospital, New York, NY, USA.
  5. Christoph Wipplinger: Weill Cornell Medical College, New York-Presbyterian Hospital, New York, NY, USA. ORCID
  6. Taylor Wong: Weill Cornell Medical College, New York-Presbyterian Hospital, New York, NY, USA.
  7. Roger Härtl: Weill Cornell Medical College, New York-Presbyterian Hospital, New York, NY, USA.

Abstract

Innovative technology and techniques have revolutionized minimally invasive spine surgery (MIS) within the past decade. The introduction of navigation and image-guided surgery has greatly affected spinal surgery and will continue to make surgery safer and more efficient. Eventually, it is conceivable that fluoroscopy will be completely replaced with image guidance. These advancements, among others such as robotics and virtual and augmented reality technology, will continue to drive the value of 3-dimensional navigation in MIS. In this review, we cover pertinent features of navigation in MIS and explore their evolution over time. Moreover, we aim to discuss the key features germane to surgical advancement, including technique and technology development, accuracy, overall health care costs, operating room time efficiency, and radiation exposure.

Keywords

References

  1. Neurosurgery. 2011 Jan;68(1):170-8; discussion 178 [PMID: 21150762]
  2. BMJ. 2015 Apr 01;350:h1603 [PMID: 25833966]
  3. Neurosurgery. 2012 Apr;70(4):990-5 [PMID: 21946509]
  4. Med Sci Monit. 2017 Dec 16;23:5960-5968 [PMID: 29247503]
  5. Surg Neurol Int. 2014 Dec 30;5(Suppl 15):S520-2 [PMID: 25593770]
  6. Neurospine. 2018 Sep;15(3):216-224 [PMID: 30157583]
  7. Neurosurg Focus. 2014 Mar;36(3):E1 [PMID: 24580001]
  8. Oper Neurosurg (Hagerstown). 2020 May 1;18(5):496-502 [PMID: 31504859]
  9. World Neurosurg. 2018 Aug;116:433-443.e8 [PMID: 29859354]
  10. J Spine Surg. 2019 Mar;5(1):155-165 [PMID: 31032450]
  11. J Spinal Disord Tech. 2007 Apr;20(2):118-22 [PMID: 17414979]
  12. Spine (Phila Pa 1976). 2019 Apr 1;44(7):517-525 [PMID: 30234816]
  13. Spine (Phila Pa 1976). 2013 Mar 1;38(5):E306-12 [PMID: 23238490]
  14. Open Orthop J. 2010 Aug 06;4:228-33 [PMID: 21249166]
  15. J Neurosurg. 2002 Jul;97(1 Suppl):7-12 [PMID: 12120655]
  16. J Neurosurg Spine. 2019 Feb 8;:1-8 [PMID: 30738398]
  17. Spine J. 2008 Jul-Aug;8(4):591-6 [PMID: 17602885]
  18. Spine (Phila Pa 1976). 1997 Oct 1;22(19):2239-45 [PMID: 9346144]
  19. J Spinal Disord Tech. 2015 Jul;28(6):E347-51 [PMID: 23563342]
  20. Neurosurg Focus. 2001 Apr 15;10(4):E10 [PMID: 16732626]
  21. Spine (Phila Pa 1976). 2020 Jan 1;45(1):E45-E53 [PMID: 31415457]
  22. World Neurosurg. 2017 Apr;100:325-335 [PMID: 28104526]
  23. Spine (Phila Pa 1976). 1998 Oct 15;23(20):2226-30 [PMID: 9802166]
  24. J Clin Anesth. 2010 Jun;22(4):233-6 [PMID: 20522350]
  25. Spine (Phila Pa 1976). 2019 Aug 1;44(15):1097-1104 [PMID: 30830046]
  26. Cureus. 2017 Jul 18;9(7):e1488 [PMID: 28944127]
  27. J Spinal Disord Tech. 2008 Feb;21(1):63-7 [PMID: 18418139]
  28. J Pediatr Orthop. 2012 Sep;32(6):e23-9 [PMID: 22892631]
  29. Spine (Phila Pa 1976). 2012 Dec 1;37(25):E1580-7 [PMID: 23196967]
  30. J Neurosurg Spine. 2014 Sep;21(3):320-8 [PMID: 24926927]
  31. World Neurosurg. 2016 Jul;91:424-33 [PMID: 27108022]
  32. Spine (Phila Pa 1976). 2009 Dec 15;34(26):2919-26 [PMID: 20010400]
  33. World Neurosurg. 2019 May;125:e429-e434 [PMID: 30708077]
  34. Spine J. 2015 Jan 1;15(1):168-75 [PMID: 25194517]
  35. Neurosurg Clin N Am. 2014 Apr;25(2):279-304 [PMID: 24703447]
  36. Int J Med Robot. 2010 Dec;6(4):483-8 [PMID: 20954163]
  37. Eur Spine J. 2007 May;16(5):625-9 [PMID: 17106663]
  38. Spine (Phila Pa 1976). 1990 Jan;15(1):11-4 [PMID: 2326693]
  39. Clin Spine Surg. 2017 Jul;30(6):E669-E676 [PMID: 28632552]
  40. J Spinal Disord Tech. 2014 Oct;27(7):390-4 [PMID: 23698104]
  41. J Neurosurg Spine. 2013 Feb;18(2):178-83 [PMID: 23198696]
  42. World Neurosurg. 2019 Aug;128:e541-e551 [PMID: 31051306]
  43. J Neurosurg Spine. 2011 Apr;14(4):532-6 [PMID: 21275555]
  44. Neurosurgery. 2017 Mar 01;80(3S):S86-S99 [PMID: 28350944]
  45. Global Spine J. 2012 Sep;2(3):143-52 [PMID: 24353961]
  46. J Neurosurg Spine. 2014 Feb;20(2):196-203 [PMID: 24358998]
  47. World Neurosurg. 2019 Jun;126:e1449-e1455 [PMID: 30904807]
  48. Cureus. 2016 Feb 23;8(2):e507 [PMID: 27026832]
  49. Neurol Res. 2014 Nov;36(11):968-73 [PMID: 24846707]
  50. Eur Spine J. 2013 Aug;22(8):1741-9 [PMID: 23572345]
  51. J Korean Neurosurg Soc. 2012 Sep;52(3):204-9 [PMID: 23115662]
  52. Neurosurg Focus. 2014 Jun;36(6):E4 [PMID: 24881636]
  53. Spine J. 2008 Jul-Aug;8(4):584-90 [PMID: 18586198]
  54. Biomed Res Int. 2016;2016:5027340 [PMID: 27529069]

Word Cloud

Created with Highcharts 10.0.0surgerynavigationMIStechnologywillminimallyinvasivecontinueroboticsaugmentedreality3-dimensionalfeaturestimeInnovativetechniquesrevolutionizedspinewithinpastdecadeintroductionimage-guidedgreatlyaffectedspinalmakesaferefficientEventuallyconceivablefluoroscopycompletelyreplacedimageguidanceadvancementsamongothersvirtualdrivevaluereviewcoverpertinentexploreevolutionMoreoveraimdiscusskeygermanesurgicaladvancementincludingtechniquedevelopmentaccuracyoverallhealthcarecostsoperatingroomefficiencyradiationexposureEvolvingNavigationRoboticsAugmentedRealityMinimallyInvasiveSpineSurgeryintraoperativeCT

Similar Articles

Cited By