An AgNP-deposited commercial electrochemistry test strip as a platform for urea detection.

Juanjuan Liu, Roozbeh Siavash Moakhar, Ayyappasamy Sudalaiyadum Perumal, Horia Nicolae Roman, Sara Mahshid, Sebastian Wachsmann-Hogiu
Author Information
  1. Juanjuan Liu: Department of Bioengineering, McGill University, Montreal, Quebec, H3A 0C3, Canada.
  2. Roozbeh Siavash Moakhar: Department of Bioengineering, McGill University, Montreal, Quebec, H3A 0C3, Canada.
  3. Ayyappasamy Sudalaiyadum Perumal: Department of Bioengineering, McGill University, Montreal, Quebec, H3A 0C3, Canada.
  4. Horia Nicolae Roman: Department of Bioengineering, McGill University, Montreal, Quebec, H3A 0C3, Canada.
  5. Sara Mahshid: Department of Bioengineering, McGill University, Montreal, Quebec, H3A 0C3, Canada.
  6. Sebastian Wachsmann-Hogiu: Department of Bioengineering, McGill University, Montreal, Quebec, H3A 0C3, Canada. Sebastian.wachsmannhogiu@mcgill.ca.

Abstract

We developed an inexpensive, portable platform for urea detection via electrochemistry by depositing silver nanoparticles (AgNPs) on a commercial glucose test strip. We modified this strip by first removing the enzymes from the surface, followed by electrodeposition of AgNPs on one channel (working electrode). The morphology of the modified test strip was characterized by Scanning Electron Microscopy (SEM), and its electrochemical performance was evaluated via Cyclic Voltammetry (CV) and Electrochemical Impedance Spectroscopy (EIS). We evaluated the performance of the device for urea detection via measurements of the dependency of peak currents vs the analyte concentration and from the relationship between the peak current and the square root of the scan rates. The observed linear range is 1-8 mM (corresponding to the physiological range of urea concentration in human blood), and the limit of detection (LOD) is 0.14 mM. The selectivity, reproducibility, reusability, and storage stability of the modified test strips are also reported. Additional tests were performed to validate the ability to measure urea in the presence of confounding factors such as spiked plasma and milk. The results demonstrate the potential of this simple and portable EC platform to be used in applications such as medical diagnosis and food safety.

References

  1. Anal Chem. 2014 Jun 17;86(12):5914-21 [PMID: 24830909]
  2. Biochem J. 1998 Nov 15;336 ( Pt 1):1-17 [PMID: 9806879]
  3. Analyst. 2020 Jan 21;145(2):364-384 [PMID: 31832630]
  4. Biosens Bioelectron. 2004 Jul 30;20(1):15-23 [PMID: 15142572]
  5. Biosens Bioelectron. 2007 Mar 15;22(8):1835-8 [PMID: 17055240]
  6. Food Chem. 2020 Jan 15;303:125375 [PMID: 31476527]
  7. Talanta. 2018 Jan 1;176:667-673 [PMID: 28917805]
  8. Chem Rev. 2008 Jul;108(7):2482-505 [PMID: 18465900]
  9. Anal Chem. 2014 Feb 18;86(4):1980-7 [PMID: 24502773]
  10. Sensors (Basel). 2008 Mar 07;8(3):1400-1458 [PMID: 27879772]
  11. Mikrochim Acta. 2018 Nov 22;185(12):558 [PMID: 30467783]
  12. Mikrochim Acta. 2019 Nov 13;186(12):773 [PMID: 31720840]
  13. Biosens Bioelectron. 2005 Mar 15;20(9):1796-804 [PMID: 15681196]
  14. Sensors (Basel). 2018 Aug 09;18(8): [PMID: 30096902]
  15. Anal Sci. 2006 Jan;22(1):173-6 [PMID: 16429798]
  16. Compr Rev Food Sci Food Saf. 2016 Jan;15(1):130-142 [PMID: 33371582]
  17. Biosens Bioelectron. 2019 Jan 1;123:36-50 [PMID: 30308420]
  18. Sensors (Basel). 2008 Sep 22;8(9):5806-5819 [PMID: 27873841]
  19. Talanta. 2009 Jun 15;78(4-5):1401-7 [PMID: 19362208]
  20. Langmuir. 2014 Sep 30;30(38):11464-73 [PMID: 25188339]
  21. Proc Natl Acad Sci U S A. 2000 Dec 19;97(26):14268-72 [PMID: 11121032]
  22. Biosens Bioelectron. 1997;12(4):321-8 [PMID: 9178517]
  23. RSC Adv. 2019 May 8;9(25):14443-14451 [PMID: 35519335]

Word Cloud

Created with Highcharts 10.0.0ureadetectionteststripplatformviamodifiedportableelectrochemistryAgNPscommercialperformanceevaluatedpeakconcentrationrangedevelopedinexpensivedepositingsilvernanoparticlesglucosefirstremovingenzymessurfacefollowedelectrodepositiononechannelworkingelectrodemorphologycharacterizedScanningElectronMicroscopySEMelectrochemicalCyclicVoltammetryCVElectrochemicalImpedanceSpectroscopyEISdevicemeasurementsdependencycurrentsvsanalyterelationshipcurrentsquarerootscanratesobservedlinear1-8 mMcorrespondingphysiologicalhumanbloodlimitLOD014 mMselectivityreproducibilityreusabilitystoragestabilitystripsalsoreportedAdditionaltestsperformedvalidateabilitymeasurepresenceconfoundingfactorsspikedplasmamilkresultsdemonstratepotentialsimpleECusedapplicationsmedicaldiagnosisfoodsafetyAgNP-deposited

Similar Articles

Cited By (14)