A comprehensive assessment of single nucleotide polymorphisms associated with pancreatic cancer risk: A protocol for systematic review and network meta-analysis.

Zhuo-Miao Ye, Li-Juan Li, Jing-Hui Zheng, Chi Zhang, Yun-Xin Lu, Youming Tang
Author Information
  1. Zhuo-Miao Ye: Ruikang School of Clinical Medicine, Guangxi University of Chinese Medicine.
  2. Li-Juan Li: The First Clinical Faculty of Guangxi University of Chinese Medicine.
  3. Jing-Hui Zheng: Department of Cardiology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning.
  4. Chi Zhang: Graduate School, Guangxi University of Chinese Medicine.
  5. Yun-Xin Lu: Department of Oncology.
  6. Youming Tang: Department of Gastroenterology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China.

Abstract

BACKGROUND: Single nucleotide polymorphisms (SNPs) have been inconsistently associated with pancreatic cancer (PC) risk. This meta-analysis aimed to synthesize relevant data on SNPs associated with PC.
METHODS: Databases were searched to identify association studies of SNPs and PC published through January 2020 from the databases of PubMed, Web of Science, Embase, Cochrane Library, China National Knowledge Infrastructure, the Chinese Science and Technology Periodical Database (VIP) and Wanfang databases. Network meta-analysis and Thakkinstian algorithm were used to select the most appropriate genetic model, along with false positive report probability (FPRP) for noteworthy associations. The methodological quality of data was assessed based on the STREGA statement Stata 14.0 will be used for systematic review and meta-analysis.
RESULTS: This study will provide a high-quality evidence to find the SNP most associated with pancreatic cancer susceptibility and the best genetic model.
CONCLUSIONS: This study will explore which SNP is most associated with pancreatic cancer susceptibility.Registration: INPLASY202040023.

References

  1. BMC Med Res Methodol. 2006 Jul 12;6:31 [PMID: 16836745]
  2. Mutagenesis. 2019 Dec 19;34(5-6):391-394 [PMID: 31606007]
  3. Oncotarget. 2016 Aug 30;7(35):57011-57020 [PMID: 27486979]
  4. Nat Genet. 2003 Feb;33(2):177-82 [PMID: 12524541]
  5. Genet Epidemiol. 2009 Nov;33(7):581-98 [PMID: 19278015]
  6. Mol Carcinog. 2019 May;58(5):760-766 [PMID: 30604909]
  7. Int J Clin Exp Med. 2015 Feb 15;8(2):2702-10 [PMID: 25932223]
  8. Int J Cancer. 2018 Apr 1;142(7):1322-1331 [PMID: 29168174]
  9. Gac Med Mex. 2017 Mar - Apr;153(2):238-250 [PMID: 28474710]
  10. Aging (Albany NY). 2020 Feb 9;12(4):3486-3501 [PMID: 32039832]
  11. Sci Rep. 2015 Nov 23;5:17018 [PMID: 26592175]
  12. Cancer Epidemiol Biomarkers Prev. 2016 Jul;25(7):1185-91 [PMID: 27197284]
  13. PLoS One. 2015 Mar 23;10(3):e0117574 [PMID: 25799011]
  14. Stat Med. 2005 May 15;24(9):1291-306 [PMID: 15568190]
  15. Chin J Cancer. 2014 Feb;33(2):68-73 [PMID: 23816557]
  16. J Natl Cancer Inst. 2004 Mar 17;96(6):434-42 [PMID: 15026468]
  17. Genet Mol Res. 2015 Aug 14;14(3):9626-32 [PMID: 26345895]
  18. Int J Cancer. 2015 Nov 1;137(9):2175-83 [PMID: 25940397]
  19. Cancer Epidemiol Biomarkers Prev. 2008 Jun;17(6):1470-9 [PMID: 18559563]
  20. Genet Mol Biol. 2018 Jan-Mar;41(1):18-26 [PMID: 29260835]
  21. PLoS One. 2015 Feb 13;10(2):e0117173 [PMID: 25680115]
  22. BMC Med Genet. 2019 Jan 17;20(1):17 [PMID: 30654740]
  23. Res Synth Methods. 2012 Dec;3(4):285-99 [PMID: 26053422]
  24. Gene. 2020 Apr 20;735:144365 [PMID: 31935498]
  25. Sci Rep. 2017 Mar 08;7:43812 [PMID: 28272475]
  26. Carcinogenesis. 2018 Jul 30;39(8):1056-1067 [PMID: 29800239]
  27. PLoS One. 2015 May 06;10(5):e0125273 [PMID: 25945796]

MeSH Term

Algorithms
Case-Control Studies
China
False Positive Reactions
Female
Genetic Predisposition to Disease
Humans
Male
Network Meta-Analysis
Pancreatic Neoplasms
Polymorphism, Single Nucleotide
Risk
Sensitivity and Specificity
Meta-Analysis as Topic
Systematic Review as Topic

Word Cloud

Created with Highcharts 10.0.0associatedpancreaticcancermeta-analysisSNPsPCwillnucleotidepolymorphismsdatadatabasesScienceusedgeneticmodelsystematicreviewstudySNPsusceptibilityBACKGROUND:SingleinconsistentlyriskaimedsynthesizerelevantMETHODS:DatabasessearchedidentifyassociationstudiespublishedJanuary2020PubMedWebEmbaseCochraneLibraryChinaNationalKnowledgeInfrastructureChineseTechnologyPeriodicalDatabaseVIPWanfangNetworkThakkinstianalgorithmselectappropriatealongfalsepositivereportprobabilityFPRPnoteworthyassociationsmethodologicalqualityassessedbasedSTREGAstatementStata140RESULTS:providehigh-qualityevidencefindbestCONCLUSIONS:exploreRegistration:INPLASY202040023comprehensiveassessmentsinglerisk:protocolnetwork

Similar Articles

Cited By

No available data.