Isolation and Culture of Corneal Stromal Stem Cells.

Richard M Nagymihaly, Morten C Moe, Goran Petrovski
Author Information
  1. Richard M Nagymihaly: Department of Ophthalmology, Center for Eye Research, Oslo University Hospital, Oslo, Norway.
  2. Morten C Moe: Department of Ophthalmology, Center for Eye Research, Oslo University Hospital, Oslo, Norway.
  3. Goran Petrovski: Department of Ophthalmology, Center for Eye Research, Oslo University Hospital, Oslo, Norway. goran.petrovski@medisin.uio.no.

Abstract

An increasing body of evidence authenticates the benefit of corneal stroma-derived stem cells (CSSCs) in tissue engineering and regeneration oriented research, and potentially in the development of clinically relevant cellular therapies. Postmortem corneal tissue obtained from otherwise discarded material after keratoplasties is oftentimes the source of the cells for ex vivo research. Relatively easy to isolate and cultivate as well as inexpensive to culture, CSSCs now represent a well-described cell type with attributes of mesenchymal stem cells (MSCs). These include differentiation- and immunosuppressive potential, as well as a favorable capacity to expand in vitro. Here, we in detail describe two straightforward methods to isolate and establish CSSC cultures ex vivo.

Keywords

References

  1. Forrester J, Dick AD, McMenamin PG, Roberts F, Pearlman E (2016) Chapter 1- anatomy of the eye and orbit. In: Forrester J, Dick AD, McMenamin PG, Roberts F, Pearlman E (eds) The eye, 4th edn. Elsevier, Amsterdam, Pages 1–102.e2. https://www.sciencedirect.com/science/article/pii/B9780702055546000010
  2. Ljubimov AV, Saghizadeh M (2015) Progress in corneal wound healing. Prog Retin Eye Res 49:17–45. https://doi.org/10.1016/j.preteyeres.2015.07.002 [DOI: 10.1016/j.preteyeres.2015.07.002]
  3. Wilson SE, Chaurasia SS, Medeiros FW (2007) Apoptosis in the initiation, modulation and termination of the corneal wound healing response. Exp Eye Res 85(3):305–311. https://doi.org/10.1016/j.exer.2007.06.009 [DOI: 10.1016/j.exer.2007.06.009]
  4. Kureshi AK, Funderburgh JL, Daniels JT (2014) Human corneal stromal stem cells exhibit survival capacity following isolation from stored organ-culture corneas. Invest Ophthalmol Vis Sci 55(11):7583–7588. https://doi.org/10.1167/iovs.14-14448 [DOI: 10.1167/iovs.14-14448]
  5. Funderburgh JL, Mann MM, Funderburgh ML (2003) Keratocyte phenotype mediates proteoglycan structure: a role for fibroblasts in corneal fibrosis. J Biol Chem 278(46):45629–45637. https://doi.org/10.1074/jbc.M303292200 [DOI: 10.1074/jbc.M303292200]
  6. Sidney LE, Branch MJ, Dua HS, Hopkinson A (2015) Effect of culture medium on propagation and phenotype of corneal stroma-derived stem cells. Cytotherapy 17(12):1706–1722. https://doi.org/10.1016/j.jcyt.2015.08.003 [DOI: 10.1016/j.jcyt.2015.08.003]
  7. Lynch AP, O’Sullivan F, Ahearne M (2016) The effect of growth factor supplementation on corneal stromal cell phenotype in vitro using a serum-free media. Exp Eye Res 151:26–37. https://doi.org/10.1016/j.exer.2016.07.015 [DOI: 10.1016/j.exer.2016.07.015]
  8. Nagymihaly R, Vereb Z, Facsko A, Moe MC, Petrovski G (2017) Effect of isolation technique and location on the phenotype of human corneal stroma-derived cells. Stem Cells Int 2017:9275248. https://doi.org/10.1155/2017/9275248 [DOI: 10.1155/2017/9275248]
  9. Vereb Z, Poliska S, Albert R, Olstad OK, Boratko A, Csortos C, Moe MC, Facsko A, Petrovski G (2016) Role of human corneal stroma-derived mesenchymal-like stem cells in corneal immunity and wound healing. Sci Rep 6:26227. https://doi.org/10.1038/srep26227 [DOI: 10.1038/srep26227]
  10. Szabo DJ, Noer A, Nagymihaly R, Josifovska N, Andjelic S, Vereb Z, Facsko A, Moe MC, Petrovski G (2015) Long-term cultures of human cornea limbal explants form 3d structures ex vivo - implications for tissue engineering and clinical applications. PLoS One 10(11):e0143053. https://doi.org/10.1371/journal.pone.0143053 [DOI: 10.1371/journal.pone.0143053]
  11. Ahearne M, Wilson SL, Liu KK, Rauz S, El Haj AJ, Yang Y (2010) Influence of cell and collagen concentration on the cell-matrix mechanical relationship in a corneal stroma wound healing model. Exp Eye Res 91(5):584–591. https://doi.org/10.1016/j.exer.2010.07.013 [DOI: 10.1016/j.exer.2010.07.013]
  12. Szabo DJ, Nagymihaly R, Vereb Z, Josifovska N, Noer A, Liskova P, Facsko A, Moe MC, Petrovski G (2018) Ex vivo 3d human corneal stroma model for schnyder corneal dystrophy - role of autophagy in its pathogenesis and resolution. Histol Histopathol 33(5):455–462. https://doi.org/10.14670/HH-11-928 [DOI: 10.14670/HH-11-928]
  13. Shojaati G, Khandaker I, Sylakowski K, Funderburgh ML, Du Y, Funderburgh JL (2018) Compressed collagen enhances stem cell therapy for corneal scarring. Stem Cells Transl Med 7(6):487–494. https://doi.org/10.1002/sctm.17-0258 [DOI: 10.1002/sctm.17-0258]
  14. Kumar A, Xu Y, Yang E, Du Y (2018) Stemness and regenerative potential of corneal stromal stem cells and their secretome after long-term storage: Implications for ocular regeneration. Invest Ophthalmol Vis Sci 59(8):3728–3738. https://doi.org/10.1167/iovs.18-23824 [DOI: 10.1167/iovs.18-23824]
  15. Matthyssen S, Ni Dhubhghaill S, Van Gerwen V, Zakaria N (2017) Xeno-free cultivation of mesenchymal stem cells from the corneal stroma. Invest Ophthalmol Vis Sci 58(5):2659–2665. https://doi.org/10.1167/iovs.17-21676 [DOI: 10.1167/iovs.17-21676]
  16. Wilson SL, Yang Y, El Haj AJ (2014) Corneal stromal cell plasticity: In vitro regulation of cell phenotype through cell-cell interactions in a three-dimensional model. Tissue Eng Part A 20(1–2):225–238. https://doi.org/10.1089/ten.TEA.2013.0167 [DOI: 10.1089/ten.TEA.2013.0167]
  17. Sidney LE, Hopkinson A (2018) Corneal keratocyte transition to mesenchymal stem cell phenotype and reversal using serum-free medium supplemented with fibroblast growth factor-2, transforming growth factor-beta3 and retinoic acid. J Tissue Eng Regen Med 12(1):e203–e215. https://doi.org/10.1002/term.2316 [DOI: 10.1002/term.2316]
  18. Foster JW, Gouveia RM, Connon CJ (2015) Low-glucose enhances keratocyte-characteristic phenotype from corneal stromal cells in serum-free conditions. Sci Rep 5:10839. https://doi.org/10.1038/srep10839 [DOI: 10.1038/srep10839]

MeSH Term

Cell Culture Techniques
Cell Differentiation
Cornea
Corneal Keratocytes
Corneal Stroma
Corneal Transplantation
Extracellular Matrix
Humans
Mesenchymal Stem Cells

Word Cloud

Created with Highcharts 10.0.0cellsstemCornealcornealCSSCstissueresearchexvivoisolatewellIsolationincreasingbodyevidenceauthenticatesbenefitstroma-derivedengineeringregenerationorientedpotentiallydevelopmentclinicallyrelevantcellulartherapiesPostmortemobtainedotherwisediscardedmaterialkeratoplastiesoftentimessourceRelativelyeasycultivateinexpensiveculturenowrepresentwell-describedcelltypeattributesmesenchymalMSCsincludedifferentiation-immunosuppressivepotentialfavorablecapacityexpandvitrodetaildescribetwostraightforwardmethodsestablishCSSCculturesCultureStromalStemCellsCellculturingCorneafibroblastsstromastromalKeratocytesMesenchymal

Similar Articles

Cited By