MicroRNAs in Sarcopenia: A Systematic Review.

Katsunori Yanai, Shohei Kaneko, Hiroki Ishii, Akinori Aomatsu, Kiyonori Ito, Keiji Hirai, Susumu Ookawara, Kenichi Ishibashi, Yoshiyuki Morishita
Author Information
  1. Katsunori Yanai: Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan.
  2. Shohei Kaneko: Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan.
  3. Hiroki Ishii: Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan.
  4. Akinori Aomatsu: Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan.
  5. Kiyonori Ito: Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan.
  6. Keiji Hirai: Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan.
  7. Susumu Ookawara: Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan.
  8. Kenichi Ishibashi: Department of Medical Physiology, Meiji Pharmaceutical University, Tokyo, Japan.
  9. Yoshiyuki Morishita: Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan.

Abstract

Sarcopenia, which is characterized by the loss of skeletal muscle, has been reported to contribute to development of physical disabilities, various illnesses, and increasing mortality. MicroRNAs (miRNAs) are small non-coding RNAs that inhibit translation of target messenger RNAs. Previous studies have shown that miRNAs play pivotal roles in the development of sarcopenia. Therefore, this systematic review focuses on miRNAs that regulate sarcopenia.

Keywords

References

  1. J Gerontol A Biol Sci Med Sci. 2017 Oct 1;72(10):1319-1326 [PMID: 27927764]
  2. J Neuroimmune Pharmacol. 2017 Sep;12(3):420-432 [PMID: 28236278]
  3. Front Genet. 2018 Nov 16;9:548 [PMID: 30505320]
  4. Curr Opin Pharmacol. 2012 Jun;12(3):377-82 [PMID: 22445545]
  5. Biochem Biophys Res Commun. 2016 Apr 29;473(2):462-70 [PMID: 26975470]
  6. Front Physiol. 2018 Nov 26;9:1648 [PMID: 30534079]
  7. J Appl Physiol (1985). 2019 Aug 1;127(2):619-632 [PMID: 30991011]
  8. FASEB J. 2014 Sep;28(9):4133-47 [PMID: 24928197]
  9. Front Nutr. 2019 Jun 12;6:91 [PMID: 31249834]
  10. Trials. 2018 Jan 04;19(1):6 [PMID: 29301558]
  11. Ageing Res Rev. 2012 Sep;11(4):432-41 [PMID: 22687959]
  12. Osteoporos Sarcopenia. 2017 Sep;3(3):117-122 [PMID: 30775515]
  13. Ageing Res Rev. 2015 Nov;24(Pt B):263-73 [PMID: 26342566]
  14. Aging (Albany NY). 2014 Jul;6(7):524-44 [PMID: 25063768]
  15. Ageing Res Rev. 2011 Apr;10(2):216-24 [PMID: 20170753]
  16. J Cachexia Sarcopenia Muscle. 2018 Apr;9(2):400-416 [PMID: 29215200]
  17. Exp Gerontol. 2019 Sep;124:110637 [PMID: 31199979]
  18. BMJ. 2015 Jan 02;350:g7647 [PMID: 25555855]
  19. J Cachexia Sarcopenia Muscle. 2019 Feb;10(1):218-225 [PMID: 30920774]
  20. Oncol Rep. 2018 Apr;39(4):1555-1564 [PMID: 29484416]
  21. Curr Rheumatol Rep. 2019 Jun 15;21(8):40 [PMID: 31203463]
  22. Biogerontology. 2016 Jun;17(3):641-54 [PMID: 26922183]
  23. BMJ Open. 2016 Aug 23;6(8):e012091 [PMID: 27554105]
  24. Mech Ageing Dev. 2017 Jul;165(Pt B):147-155 [PMID: 28390822]
  25. Aging (Albany NY). 2017 Mar 22;9(3):1012-1029 [PMID: 28331100]
  26. Endocrine. 2013 Feb;43(1):12-21 [PMID: 22815045]
  27. PLoS One. 2014 Oct 21;9(10):e110644 [PMID: 25333486]
  28. PLoS One. 2012;7(9):e44798 [PMID: 22984561]
  29. Microrna. 2015;4(2):74-85 [PMID: 26268469]
  30. Biochem Pharmacol. 2016 May 15;108:1-10 [PMID: 26711691]
  31. J Cachexia Sarcopenia Muscle. 2018 Dec;9(7):1209-1212 [PMID: 30697980]
  32. J Bone Metab. 2017 Feb;24(1):1-8 [PMID: 28326295]
  33. Mediators Inflamm. 2016;2016:1438686 [PMID: 27382188]
  34. BMC Cancer. 2018 Oct 22;18(1):1014 [PMID: 30348127]
  35. J Physiol. 2016 Apr 15;594(8):2125-46 [PMID: 26435167]
  36. Ageing Res Rev. 2014 Sep;17:25-33 [PMID: 24833328]
  37. Exp Gerontol. 2018 Sep;110:23-34 [PMID: 29751091]
  38. Biochem Biophys Rep. 2017 Mar;9:273-280 [PMID: 28691106]
  39. J Cachexia Sarcopenia Muscle. 2017 Jun;8(3):405-416 [PMID: 28058815]
  40. Aging (Albany NY). 2018 Jun 14;10(6):1338-1355 [PMID: 29905532]
  41. Mech Ageing Dev. 2019 Mar;178:9-15 [PMID: 30528652]
  42. J Gerontol A Biol Sci Med Sci. 2017 Oct 12;72(11):1483-1491 [PMID: 28329037]
  43. Clin Interv Aging. 2018 Nov 22;13:2407-2419 [PMID: 30538437]
  44. J Leukoc Biol. 2017 Aug;102(2):209-219 [PMID: 28596252]
  45. Bone. 2019 Mar;120:271-278 [PMID: 30408612]
  46. Am J Physiol Endocrinol Metab. 2008 Dec;295(6):E1333-40 [PMID: 18827171]
  47. J Shoulder Elbow Surg. 2014 Jan;23(1):99-108 [PMID: 23790676]
  48. J Cachexia Sarcopenia Muscle. 2016 Jun;7(3):330-44 [PMID: 27239417]
  49. Aging (Albany NY). 2014 Mar;6(3):160-75 [PMID: 24659628]
  50. Mol Cell Endocrinol. 2016 Sep 5;432:83-95 [PMID: 26525415]
  51. Mol Ther Nucleic Acids. 2019 Mar 1;14:536-549 [PMID: 30769134]
  52. Front Physiol. 2014 Apr 08;5:119 [PMID: 24782779]
  53. Gerontology. 2016;62(2):182-90 [PMID: 26227153]
  54. Arch Med Sci. 2018 Jun;14(4):890-909 [PMID: 30002709]
  55. Discov Med. 2018 Dec;26(145):271-280 [PMID: 30695676]
  56. J Frailty Aging. 2018;7(2):100-103 [PMID: 29741193]
  57. Aging Cell. 2016 Apr;15(2):361-9 [PMID: 26762731]
  58. Acta Biochim Biophys Sin (Shanghai). 2016 Sep;48(9):833-9 [PMID: 27563005]
  59. Sci Rep. 2017 Sep 26;7(1):12314 [PMID: 28951568]
  60. Hum Genet. 2012 Jan;131(1):1-31 [PMID: 21706341]
  61. Curr Opin Rheumatol. 2012 Nov;24(6):628-34 [PMID: 22918531]
  62. J Gerontol A Biol Sci Med Sci. 2019 Jun 18;74(7):1008-1014 [PMID: 30215687]
  63. J Cachexia Sarcopenia Muscle. 2018 Feb;9(1):20-27 [PMID: 29193905]
  64. Curr Genomics. 2009 May;10(3):144-53 [PMID: 19881908]
  65. J Cachexia Sarcopenia Muscle. 2019 Jun;10(3):536-548 [PMID: 31091026]
  66. Biochem Biophys Res Commun. 2010 Sep 24;400(3):379-83 [PMID: 20800581]
  67. Front Physiol. 2016 Oct 05;7:445 [PMID: 27761114]
  68. Eur J Transl Myol. 2015 Aug 25;25(4):231-6 [PMID: 26913161]
  69. Physiol Genomics. 2011 May 1;43(10):595-603 [PMID: 20876843]
  70. Rejuvenation Res. 2011 Aug;14(4):449-55 [PMID: 21851178]
  71. Physiol Genomics. 2018 Jun 1;50(6):416-424 [PMID: 29602299]
  72. Oxid Med Cell Longev. 2018 Jul 18;2018:7671850 [PMID: 30116492]
  73. Front Physiol. 2015 Mar 19;6:82 [PMID: 25852569]
  74. Acta Orthop. 2015 Feb;86(1):92-9 [PMID: 25175665]
  75. Mol Cell Biochem. 2017 Mar;427(1-2):187-199 [PMID: 28000044]
  76. Front Physiol. 2019 May 07;10:522 [PMID: 31133872]
  77. Biomed Res Int. 2015;2015:676575 [PMID: 26258142]
  78. Ageing Res Rev. 2007 May;6(1):1-11 [PMID: 17383241]
  79. J Endocr Soc. 2017 Jun 14;1(8):1015-1026 [PMID: 29264553]
  80. Exerc Sport Sci Rev. 2018 Apr;46(2):86-91 [PMID: 29346160]
  81. Mech Ageing Dev. 2017 Dec;168:54-57 [PMID: 28754532]
  82. Mamm Genome. 2016 Aug;27(7-8):341-57 [PMID: 27215643]
  83. Skelet Muscle. 2016 Sep 01;6(1):29 [PMID: 27588166]
  84. Ageing Res Rev. 2018 Nov;47:214-277 [PMID: 30071357]

Word Cloud

Created with Highcharts 10.0.0miRNAssarcopeniadevelopmentMicroRNAsRNAssystematicreviewSarcopeniacharacterizedlossskeletalmusclereportedcontributephysicaldisabilitiesvariousillnessesincreasingmortalitysmallnon-codinginhibittranslationtargetmessengerPreviousstudiesshownplaypivotalrolesThereforefocusesregulateSarcopenia:SystematicReviewmicroRNAmyoblastmyocytemyotube

Similar Articles

Cited By