Phosphoregulated orthogonal signal transduction in mammalian cells.

Leo Scheller, Marc Schmollack, Adrian Bertschi, Maysam Mansouri, Pratik Saxena, Martin Fussenegger
Author Information
  1. Leo Scheller: Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058, Basel, Switzerland. ORCID
  2. Marc Schmollack: Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058, Basel, Switzerland.
  3. Adrian Bertschi: Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058, Basel, Switzerland. ORCID
  4. Maysam Mansouri: Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058, Basel, Switzerland.
  5. Pratik Saxena: Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058, Basel, Switzerland.
  6. Martin Fussenegger: Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058, Basel, Switzerland. martin.fussenegger@bsse.ethz.ch. ORCID

Abstract

Orthogonal tools for controlling protein function by post-translational modifications open up new possibilities for protein circuit engineering in synthetic biology. Phosphoregulation is a key mechanism of signal processing in all kingdoms of life, but tools to control the involved processes are very limited. Here, we repurpose components of bacterial two-component systems (TCSs) for chemically induced phosphotransfer in mammalian cells. TCSs are the most abundant multi-component signal-processing units in bacteria, but are not found in the animal kingdom. The presented phosphoregulated orthogonal signal transduction (POST) system uses induced nanobody dimerization to regulate the trans-autophosphorylation activity of engineered histidine kinases. Engineered response regulators use the phosphohistidine residue as a substrate to autophosphorylate an aspartate residue, inducing their own homodimerization. We verify this approach by demonstrating control of gene expression with engineered, dimerization-dependent transcription factors and propose a phosphoregulated relay system of protein dimerization as a basic building block for next-generation protein circuits.

References

  1. Buelow, D. R. & Raivio, T. L. Three (and more) component regulatory systems— auxiliary regulators of bacterial histidine kinases. Mol. Microbiol. 75, 547–566 (2010). [PMID: 19943903]
  2. Zschiedrich, C. P., Keidel, V. & Szurmant, H. Molecular mechanisms of two-component signal transduction. J. Mol. Biol. 428, 3752–3775 (2016). [PMID: 27519796]
  3. Batchelor, E. & Goulian, M. Robustness and the cycle of phosphorylation and dephosphorylation in a two-component regulatory system. Proc. Natl Acad. Sci. USA 100, 691–696 (2003). [PMID: 12522261]
  4. Baaske, J. et al. Dual-controlled optogenetic system for the rapid down-regulation of protein levels in mammalian cells. Sci. Rep. 8, 15024 (2018). [PMID: 30301909]
  5. Prindle, A. et al. Rapid and tunable post-translational coupling of genetic circuits. Nature 508, 387–391 (2014). [PMID: 24717442]
  6. Kim, J. R. & Cho, K. H. The multi-step phosphorelay mechanism of unorthodox two-component systems in E. coli realizes ultrasensitivity to stimuli while maintaining robustness to noises. Comput. Biol. Chem. 30, 438–444 (2006). [PMID: 17112785]
  7. O’Shaughnessy, E. C., Palani, S., Collins, J. J. & Sarkar, C. A. Tunable signal processing in synthetic MAP kinase cascades. Cell 144, 119–131 (2011). [PMID: 21215374]
  8. Kiel, C., Yus, E. & Serrano, L. Engineering signal transduction pathways. Cell 140, 33–47 (2010). [PMID: 20085704]
  9. Lim, W. A. Designing customized cell signalling circuits. Nat. Rev. Mol. Cell Biol. 11, 393–403 (2010). [PMID: 20485291]
  10. Johnson, M. B., March, A. R. & Morsut, L. Engineering multicellular systems: using synthetic biology to control tissue self-organization. Curr. Opin. Biomed. Eng. 4, 163–173 (2017). [PMID: 29308442]
  11. Bashor, C. J. & Collins, J. J. Understanding biological regulation through synthetic biology. Annu. Rev. Biophys. 47, 399–423 (2018). [PMID: 29547341]
  12. Wu, Y. & Wang, Y. Protein circuits reprogram cells. Nat. Chem. Biol. 15, 96–97 (2019). [PMID: 30617291]
  13. Stanton, B. C. et al. Systematic transfer of prokaryotic sensors and circuits to mammalian cells. ACS Synth. Biol. 3, 880–891 (2014). [PMID: 25360681]
  14. Chung, H. K. et al. A compact synthetic pathway rewires cancer signaling to therapeutic effector release. Science 364, https://doi.org/10.1126/science.aat6982 (2019).
  15. Gao, X. J., Chong, L. S., Kim, M. S. & Elowitz, M. B. Programmable protein circuits in living cells. Science 361, 1252–1258 (2018). [PMID: 30237357]
  16. Stein, V. & Alexandrov, K. Protease-based synthetic sensing and signal amplification. Proc. Natl Acad. Sci. USA 111, 15934–15939 (2014). [PMID: 25355910]
  17. Fink, T. et al. Design of fast proteolysis-based signaling and logic circuits in mammalian cells. Nat. Chem. Biol. 15, 115–122 (2019). [PMID: 30531965]
  18. Cella, F., Wroblewska, L., Weiss, R. & Siciliano, V. Engineering protein-protein devices for multilayered regulation of mRNA translation using orthogonal proteases in mammalian cells. Nat. Commun. 9, 4392 (2018). [PMID: 30349044]
  19. Schwarz, K. A., Daringer, N. M., Dolberg, T. B. & Leonard, J. N. Rewiring human cellular input–output using modular extracellular sensors. Nat. Chem. Biol. 13, 202–209 (2017). [PMID: 27941759]
  20. Mazé, A. & Benenson, Y. Artificial signaling in mammalian cells enabled by prokaryotic two-component system. Nat. Chem. Biol. 16, 179–187 (2020). [PMID: 31844302]
  21. Regot, S., Hughey, J. J., Bajar, B. T., Carrasco, S. & Covert, M. W. High-sensitivity measurements of multiple kinase activities in live single cells. Cell 157, 1724–1734 (2014). [PMID: 24949979]
  22. Gordley, R. M. et al. Engineering dynamical control of cell fate switching using synthetic phospho-regulons. Proc. Natl Acad. Sci. USA 113, 13528–13533 (2016). [PMID: 27821768]
  23. Pincus, D. et al. Engineering allosteric regulation in protein kinases. Sci. Signal. 11, https://doi.org/10.1126/scisignal.aar3250 (2018).
  24. Sun, J. et al. Engineered proteins with sensing and activating modules for automated reprogramming of cellular functions. Nat. Commun. 8, 477 (2017). [PMID: 28883531]
  25. Stein, V. & Alexandrov, K. Synthetic protein switches: design principles and applications. Trends Biotechnol. 33, 101–110 (2015). [PMID: 25535088]
  26. den Hamer, A. et al. Small-molecule-induced and cooperative enzyme assembly on a 14-3-3 scaffold. Chembiochem 18, 331–335 (2017). [DOI: 10.1002/cbic.201600631]
  27. Chu, P. H. et al. Engineered kinase activation reveals unique morphodynamic phenotypes and associated trafficking for Src family isoforms. Proc. Natl Acad. Sci. USA 111, 12420–12425 (2014). [PMID: 25118278]
  28. Miyamoto, T. et al. Rapid and orthogonal logic gating with a gibberellin-induced dimerization system. Nat. Chem. Biol. 8, 465–470 (2012). [PMID: 22446836]
  29. Zetsche, B., Volz, S. E. & Zhang, F. A split-Cas9 architecture for inducible genome editing and transcription modulation. Nat. Biotechnol. 33, 139–142 (2015). [PMID: 25643054]
  30. Gao, Y. et al. Complex transcriptional modulation with orthogonal and inducible dCas9 regulators. Nat. Methods 13, 1043–1049 (2016). [PMID: 27776111]
  31. Fields, S. & Song, O. A novel genetic system to detect protein-protein interactions. Nature 340, 245–246 (1989). [PMID: 2547163]
  32. Thibodeaux, G. N., Cowmeadow, R., Umeda, A. & Zhang, Z. A tetracycline repressor-based mammalian two-hybrid system to detect protein-protein interactions in vivo. Anal. Biochem. 386, 129–131 (2009). [PMID: 19111517]
  33. Janausch, I. G., Garcia-Moreno, I. & Unden, G. Function of DcuS from Escherichia coli as a fumarate-stimulated histidine protein kinase in vitro. J. Biol. Chem. 277, 39809–39814 (2002). [PMID: 12167640]
  34. Hansen, J. et al. Transplantation of prokaryotic two-component signaling pathways into mammalian cells. Proc. Natl Acad. Sci. USA 111, 15705–15710 (2014). [PMID: 25331891]
  35. UniProt, C. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 47, D506–D515 (2019). [DOI: 10.1093/nar/gky1049]
  36. Etzkorn, M. et al. Plasticity of the PAS domain and a potential role for signal transduction in the histidine kinase DcuS. Nat. Struct. Mol. Biol. 15, 1031–1039 (2008). [PMID: 18820688]
  37. Monzel, C., Degreif-Dunnwald, P., Gropper, C., Griesinger, C. & Unden, G. The cytoplasmic PASC domain of the sensor kinase DcuS of Escherichia coli: role in signal transduction, dimer formation, and DctA interaction. MicrobiologyOpen 2, 912–927 (2013). [PMID: 24039243]
  38. Monzel, C. & Unden, G. Transmembrane signaling in the sensor kinase DcuS of Escherichia coli: A long-range piston-type displacement of transmembrane helix 2. Proc. Natl Acad. Sci. USA 112, 11042–11047 (2015). [PMID: 26283365]
  39. Lesne, J. et al. Structural basis for chemically-induced homodimerization of a single domain antibody. Sci. Rep. 9, 1840 (2019). [PMID: 30755682]
  40. Bojar, D., Scheller, L., Hamri, G. C., Xie, M. & Fussenegger, M. Caffeine-inducible gene switches controlling experimental diabetes. Nat. Commun. 9, 2318 (2018). [PMID: 29921872]
  41. Wolanin, P. M., Thomason, P. A. & Stock, J. B. Histidine protein kinases: key signal transducers outside the animal kingdom. Genome Biol. 3, REVIEWS3013 (2002). [PMID: 12372152]
  42. Stock, A. M., Robinson, V. L. & Goudreau, P. N. Two-component signal transduction. Annu. Rev. Biochem. 69, 183–215 (2000). [PMID: 10966457]
  43. Skerker, J. M. et al. Rewiring the specificity of two-component signal transduction systems. Cell 133, 1043–1054 (2008). [PMID: 18555780]
  44. Rowland, M. A. & Deeds, E. J. Crosstalk and the evolution of specificity in two-component signaling. Proc. Natl Acad. Sci. USA 111, 5550–5555 (2014). [PMID: 24706803]
  45. Gao, R., Mack, T. R. & Stock, A. M. Bacterial response regulators: versatile regulatory strategies from common domains. Trends Biochem. Sci. 32, 225–234 (2007). [PMID: 17433693]
  46. Abo-Amer, A. E. et al. DNA interaction and phosphotransfer of the C4-dicarboxylate-responsive DcuS-DcuR two-component regulatory system from Escherichia coli. J. Bacteriol. 186, 1879–1889 (2004). [PMID: 14996819]
  47. Janausch, I. G., Garcia-Moreno, I., Lehnen, D., Zeuner, Y. & Unden, G. Phosphorylation and DNA binding of the regulator DcuR of the fumarate-responsive two-component system DcuSR of Escherichia coli. Microbiology 150, 877–883 (2004). [PMID: 15073297]
  48. Cella, F. & Siciliano, V. Protein-based parts and devices that respond to intracellular and extracellular signals in mammalian cells. Curr. Opin. Chem. Biol. 52, 47–53 (2019). [PMID: 31158655]
  49. Ha, S. H. & Ferrell, J. E. Thresholds and ultrasensitivity from negative cooperativity. Science 352, 990–993 (2016). [PMID: 27174675]
  50. Bouillet, S., Wu, T., Chen, S., Stock, A. M. & Gao, R. Structural asymmetry does not indicate hemi-phosphorylation in the bacterial histidine kinase CpxA. J. Biol. Chem. https://doi.org/10.1074/jbc.RA120.012757 (2020). [DOI: 10.1074/jbc.RA120.012757]
  51. Trajtenberg, F., Graña, M., Ruétalo, N., Botti, H. & Buschiazzo, A. Structural and enzymatic insights into the ATP binding and autophosphorylation mechanism of a sensor histidine kinase. J. Biol. Chem. 285, 24892–24903 (2010). [PMID: 20507988]
  52. Loew, R., Heinz, N., Hampf, M., Bujard, H. & Gossen, M. Improved Tet-responsive promoters with minimized background expression. BMC Biotechnol. 10, 81 (2010). [PMID: 21106052]
  53. de Lorenzo, V. Beware of metaphors: chasses and orthogonality in synthetic biology. Bioeng. Bugs 2, 3–7 (2011). [PMID: 21636982]
  54. Ferris, H. U., Coles, M., Lupas, A. N. & Hartmann, M. D. Crystallographic snapshot of the Escherichia coli EnvZ histidine kinase in an active conformation. J. Struct. Biol. 186, 376–379 (2014). [PMID: 24681325]
  55. Siryaporn, A. & Goulian, M. Characterizing cross-talk in vivo avoiding pitfalls and overinterpretation. Methods Enzymol. 471, 1–16 (2010). [PMID: 20946839]
  56. Diensthuber, R. P., Bommer, M., Gleichmann, T. & Moglich, A. Full-length structure of a sensor histidine kinase pinpoints coaxial coiled coils as signal transducers and modulators. Structure 21, 1127–1136 (2013). [PMID: 23746806]
  57. Moglich, A., Ayers, R. A. & Moffat, K. Structure and signaling mechanism of Per-ARNT-Sim domains. Structure 17, 1282–1294 (2009). [PMID: 19836329]
  58. Simonsen, J. L. et al. Telomerase expression extends the proliferative life-span and maintains the osteogenic potential of human bone marrow stromal cells. Nat. Biotechnol. 20, 592–596 (2002). [PMID: 12042863]
  59. Heng, B. C. et al. mRNA transfection-based, feeder-free, induced pluripotent stem cells derived from adipose tissue of a 50-year-old patient. Metab. Eng. 18, 9–24 (2013). [PMID: 23542141]
  60. Benchling [Biology Software]. https://benchling.com (2020).
  61. Lehwark, P. & Greiner, S. GB2sequin—a file converter preparing custom GenBank files for database submission. Genomics 111, 759–761 (2019). [PMID: 29842948]
  62. Blainey, P., Krzywinski, M. & Altman, N. Points of significance: replication. Nat. Methods 11, 879–880 (2014). [PMID: 25317452]

MeSH Term

Adipose Tissue
Animals
Bacterial Proteins
Female
Gene Expression Regulation
HEK293 Cells
Histidine
Histidine Kinase
Humans
Induced Pluripotent Stem Cells
Mesenchymal Stem Cells
Middle Aged
Nanotechnology
Phosphorylation
Protein Domains
Protein Multimerization
Protein Processing, Post-Translational
Signal Transduction
Synthetic Biology
Transcription Factors

Chemicals

Bacterial Proteins
Transcription Factors
Histidine
Histidine Kinase

Word Cloud

Created with Highcharts 10.0.0proteinsignaltoolscontrolTCSsinducedmammaliancellsphosphoregulatedorthogonaltransductionsystemdimerizationengineeredresidueOrthogonalcontrollingfunctionpost-translationalmodificationsopennewpossibilitiescircuitengineeringsyntheticbiologyPhosphoregulationkeymechanismprocessingkingdomslifeinvolvedprocesseslimitedrepurposecomponentsbacterialtwo-componentsystemschemicallyphosphotransferabundantmulti-componentsignal-processingunitsbacteriafoundanimalkingdompresentedPOSTusesnanobodyregulatetrans-autophosphorylationactivityhistidinekinasesEngineeredresponseregulatorsusephosphohistidinesubstrateautophosphorylateaspartateinducinghomodimerizationverifyapproachdemonstratinggeneexpressiondimerization-dependenttranscriptionfactorsproposerelaybasicbuildingblocknext-generationcircuitsPhosphoregulated

Similar Articles

Cited By