Phosphoregulated orthogonal signal transduction in mammalian cells.
Leo Scheller, Marc Schmollack, Adrian Bertschi, Maysam Mansouri, Pratik Saxena, Martin Fussenegger
Author Information
Leo Scheller: Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058, Basel, Switzerland. ORCID
Marc Schmollack: Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058, Basel, Switzerland.
Adrian Bertschi: Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058, Basel, Switzerland. ORCID
Maysam Mansouri: Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058, Basel, Switzerland.
Pratik Saxena: Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058, Basel, Switzerland.
Martin Fussenegger: Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058, Basel, Switzerland. martin.fussenegger@bsse.ethz.ch. ORCID
Orthogonal tools for controlling protein function by post-translational modifications open up new possibilities for protein circuit engineering in synthetic biology. Phosphoregulation is a key mechanism of signal processing in all kingdoms of life, but tools to control the involved processes are very limited. Here, we repurpose components of bacterial two-component systems (TCSs) for chemically induced phosphotransfer in mammalian cells. TCSs are the most abundant multi-component signal-processing units in bacteria, but are not found in the animal kingdom. The presented phosphoregulated orthogonal signal transduction (POST) system uses induced nanobody dimerization to regulate the trans-autophosphorylation activity of engineered histidine kinases. Engineered response regulators use the phosphohistidine residue as a substrate to autophosphorylate an aspartate residue, inducing their own homodimerization. We verify this approach by demonstrating control of gene expression with engineered, dimerization-dependent transcription factors and propose a phosphoregulated relay system of protein dimerization as a basic building block for next-generation protein circuits.
References
Buelow, D. R. & Raivio, T. L. Three (and more) component regulatory systems— auxiliary regulators of bacterial histidine kinases. Mol. Microbiol. 75, 547–566 (2010).
[PMID: 19943903]
Zschiedrich, C. P., Keidel, V. & Szurmant, H. Molecular mechanisms of two-component signal transduction. J. Mol. Biol. 428, 3752–3775 (2016).
[PMID: 27519796]
Batchelor, E. & Goulian, M. Robustness and the cycle of phosphorylation and dephosphorylation in a two-component regulatory system. Proc. Natl Acad. Sci. USA 100, 691–696 (2003).
[PMID: 12522261]
Baaske, J. et al. Dual-controlled optogenetic system for the rapid down-regulation of protein levels in mammalian cells. Sci. Rep. 8, 15024 (2018).
[PMID: 30301909]
Prindle, A. et al. Rapid and tunable post-translational coupling of genetic circuits. Nature 508, 387–391 (2014).
[PMID: 24717442]
Kim, J. R. & Cho, K. H. The multi-step phosphorelay mechanism of unorthodox two-component systems in E. coli realizes ultrasensitivity to stimuli while maintaining robustness to noises. Comput. Biol. Chem. 30, 438–444 (2006).
[PMID: 17112785]
O’Shaughnessy, E. C., Palani, S., Collins, J. J. & Sarkar, C. A. Tunable signal processing in synthetic MAP kinase cascades. Cell 144, 119–131 (2011).
[PMID: 21215374]
Kiel, C., Yus, E. & Serrano, L. Engineering signal transduction pathways. Cell 140, 33–47 (2010).
[PMID: 20085704]
Lim, W. A. Designing customized cell signalling circuits. Nat. Rev. Mol. Cell Biol. 11, 393–403 (2010).
[PMID: 20485291]
Johnson, M. B., March, A. R. & Morsut, L. Engineering multicellular systems: using synthetic biology to control tissue self-organization. Curr. Opin. Biomed. Eng. 4, 163–173 (2017).
[PMID: 29308442]
Bashor, C. J. & Collins, J. J. Understanding biological regulation through synthetic biology. Annu. Rev. Biophys. 47, 399–423 (2018).
[PMID: 29547341]
Wu, Y. & Wang, Y. Protein circuits reprogram cells. Nat. Chem. Biol. 15, 96–97 (2019).
[PMID: 30617291]
Stanton, B. C. et al. Systematic transfer of prokaryotic sensors and circuits to mammalian cells. ACS Synth. Biol. 3, 880–891 (2014).
[PMID: 25360681]
Chung, H. K. et al. A compact synthetic pathway rewires cancer signaling to therapeutic effector release. Science 364, https://doi.org/10.1126/science.aat6982 (2019).
Gao, X. J., Chong, L. S., Kim, M. S. & Elowitz, M. B. Programmable protein circuits in living cells. Science 361, 1252–1258 (2018).
[PMID: 30237357]
Stein, V. & Alexandrov, K. Protease-based synthetic sensing and signal amplification. Proc. Natl Acad. Sci. USA 111, 15934–15939 (2014).
[PMID: 25355910]
Fink, T. et al. Design of fast proteolysis-based signaling and logic circuits in mammalian cells. Nat. Chem. Biol. 15, 115–122 (2019).
[PMID: 30531965]
Cella, F., Wroblewska, L., Weiss, R. & Siciliano, V. Engineering protein-protein devices for multilayered regulation of mRNA translation using orthogonal proteases in mammalian cells. Nat. Commun. 9, 4392 (2018).
[PMID: 30349044]
Schwarz, K. A., Daringer, N. M., Dolberg, T. B. & Leonard, J. N. Rewiring human cellular input–output using modular extracellular sensors. Nat. Chem. Biol. 13, 202–209 (2017).
[PMID: 27941759]
Mazé, A. & Benenson, Y. Artificial signaling in mammalian cells enabled by prokaryotic two-component system. Nat. Chem. Biol. 16, 179–187 (2020).
[PMID: 31844302]
Regot, S., Hughey, J. J., Bajar, B. T., Carrasco, S. & Covert, M. W. High-sensitivity measurements of multiple kinase activities in live single cells. Cell 157, 1724–1734 (2014).
[PMID: 24949979]
Gordley, R. M. et al. Engineering dynamical control of cell fate switching using synthetic phospho-regulons. Proc. Natl Acad. Sci. USA 113, 13528–13533 (2016).
[PMID: 27821768]
Pincus, D. et al. Engineering allosteric regulation in protein kinases. Sci. Signal. 11, https://doi.org/10.1126/scisignal.aar3250 (2018).
Sun, J. et al. Engineered proteins with sensing and activating modules for automated reprogramming of cellular functions. Nat. Commun. 8, 477 (2017).
[PMID: 28883531]
Stein, V. & Alexandrov, K. Synthetic protein switches: design principles and applications. Trends Biotechnol. 33, 101–110 (2015).
[PMID: 25535088]
den Hamer, A. et al. Small-molecule-induced and cooperative enzyme assembly on a 14-3-3 scaffold. Chembiochem 18, 331–335 (2017).
[DOI: 10.1002/cbic.201600631]
Chu, P. H. et al. Engineered kinase activation reveals unique morphodynamic phenotypes and associated trafficking for Src family isoforms. Proc. Natl Acad. Sci. USA 111, 12420–12425 (2014).
[PMID: 25118278]
Miyamoto, T. et al. Rapid and orthogonal logic gating with a gibberellin-induced dimerization system. Nat. Chem. Biol. 8, 465–470 (2012).
[PMID: 22446836]
Zetsche, B., Volz, S. E. & Zhang, F. A split-Cas9 architecture for inducible genome editing and transcription modulation. Nat. Biotechnol. 33, 139–142 (2015).
[PMID: 25643054]
Gao, Y. et al. Complex transcriptional modulation with orthogonal and inducible dCas9 regulators. Nat. Methods 13, 1043–1049 (2016).
[PMID: 27776111]
Fields, S. & Song, O. A novel genetic system to detect protein-protein interactions. Nature 340, 245–246 (1989).
[PMID: 2547163]
Thibodeaux, G. N., Cowmeadow, R., Umeda, A. & Zhang, Z. A tetracycline repressor-based mammalian two-hybrid system to detect protein-protein interactions in vivo. Anal. Biochem. 386, 129–131 (2009).
[PMID: 19111517]
Janausch, I. G., Garcia-Moreno, I. & Unden, G. Function of DcuS from Escherichia coli as a fumarate-stimulated histidine protein kinase in vitro. J. Biol. Chem. 277, 39809–39814 (2002).
[PMID: 12167640]
Hansen, J. et al. Transplantation of prokaryotic two-component signaling pathways into mammalian cells. Proc. Natl Acad. Sci. USA 111, 15705–15710 (2014).
[PMID: 25331891]
UniProt, C. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 47, D506–D515 (2019).
[DOI: 10.1093/nar/gky1049]
Etzkorn, M. et al. Plasticity of the PAS domain and a potential role for signal transduction in the histidine kinase DcuS. Nat. Struct. Mol. Biol. 15, 1031–1039 (2008).
[PMID: 18820688]
Monzel, C., Degreif-Dunnwald, P., Gropper, C., Griesinger, C. & Unden, G. The cytoplasmic PASC domain of the sensor kinase DcuS of Escherichia coli: role in signal transduction, dimer formation, and DctA interaction. MicrobiologyOpen 2, 912–927 (2013).
[PMID: 24039243]
Monzel, C. & Unden, G. Transmembrane signaling in the sensor kinase DcuS of Escherichia coli: A long-range piston-type displacement of transmembrane helix 2. Proc. Natl Acad. Sci. USA 112, 11042–11047 (2015).
[PMID: 26283365]
Lesne, J. et al. Structural basis for chemically-induced homodimerization of a single domain antibody. Sci. Rep. 9, 1840 (2019).
[PMID: 30755682]
Bojar, D., Scheller, L., Hamri, G. C., Xie, M. & Fussenegger, M. Caffeine-inducible gene switches controlling experimental diabetes. Nat. Commun. 9, 2318 (2018).
[PMID: 29921872]
Wolanin, P. M., Thomason, P. A. & Stock, J. B. Histidine protein kinases: key signal transducers outside the animal kingdom. Genome Biol. 3, REVIEWS3013 (2002).
[PMID: 12372152]
Stock, A. M., Robinson, V. L. & Goudreau, P. N. Two-component signal transduction. Annu. Rev. Biochem. 69, 183–215 (2000).
[PMID: 10966457]
Skerker, J. M. et al. Rewiring the specificity of two-component signal transduction systems. Cell 133, 1043–1054 (2008).
[PMID: 18555780]
Rowland, M. A. & Deeds, E. J. Crosstalk and the evolution of specificity in two-component signaling. Proc. Natl Acad. Sci. USA 111, 5550–5555 (2014).
[PMID: 24706803]
Gao, R., Mack, T. R. & Stock, A. M. Bacterial response regulators: versatile regulatory strategies from common domains. Trends Biochem. Sci. 32, 225–234 (2007).
[PMID: 17433693]
Abo-Amer, A. E. et al. DNA interaction and phosphotransfer of the C4-dicarboxylate-responsive DcuS-DcuR two-component regulatory system from Escherichia coli. J. Bacteriol. 186, 1879–1889 (2004).
[PMID: 14996819]
Janausch, I. G., Garcia-Moreno, I., Lehnen, D., Zeuner, Y. & Unden, G. Phosphorylation and DNA binding of the regulator DcuR of the fumarate-responsive two-component system DcuSR of Escherichia coli. Microbiology 150, 877–883 (2004).
[PMID: 15073297]
Cella, F. & Siciliano, V. Protein-based parts and devices that respond to intracellular and extracellular signals in mammalian cells. Curr. Opin. Chem. Biol. 52, 47–53 (2019).
[PMID: 31158655]
Ha, S. H. & Ferrell, J. E. Thresholds and ultrasensitivity from negative cooperativity. Science 352, 990–993 (2016).
[PMID: 27174675]
Bouillet, S., Wu, T., Chen, S., Stock, A. M. & Gao, R. Structural asymmetry does not indicate hemi-phosphorylation in the bacterial histidine kinase CpxA. J. Biol. Chem. https://doi.org/10.1074/jbc.RA120.012757 (2020).
[DOI: 10.1074/jbc.RA120.012757]
Trajtenberg, F., Graña, M., Ruétalo, N., Botti, H. & Buschiazzo, A. Structural and enzymatic insights into the ATP binding and autophosphorylation mechanism of a sensor histidine kinase. J. Biol. Chem. 285, 24892–24903 (2010).
[PMID: 20507988]
Loew, R., Heinz, N., Hampf, M., Bujard, H. & Gossen, M. Improved Tet-responsive promoters with minimized background expression. BMC Biotechnol. 10, 81 (2010).
[PMID: 21106052]
de Lorenzo, V. Beware of metaphors: chasses and orthogonality in synthetic biology. Bioeng. Bugs 2, 3–7 (2011).
[PMID: 21636982]
Ferris, H. U., Coles, M., Lupas, A. N. & Hartmann, M. D. Crystallographic snapshot of the Escherichia coli EnvZ histidine kinase in an active conformation. J. Struct. Biol. 186, 376–379 (2014).
[PMID: 24681325]
Siryaporn, A. & Goulian, M. Characterizing cross-talk in vivo avoiding pitfalls and overinterpretation. Methods Enzymol. 471, 1–16 (2010).
[PMID: 20946839]
Diensthuber, R. P., Bommer, M., Gleichmann, T. & Moglich, A. Full-length structure of a sensor histidine kinase pinpoints coaxial coiled coils as signal transducers and modulators. Structure 21, 1127–1136 (2013).
[PMID: 23746806]
Moglich, A., Ayers, R. A. & Moffat, K. Structure and signaling mechanism of Per-ARNT-Sim domains. Structure 17, 1282–1294 (2009).
[PMID: 19836329]
Simonsen, J. L. et al. Telomerase expression extends the proliferative life-span and maintains the osteogenic potential of human bone marrow stromal cells. Nat. Biotechnol. 20, 592–596 (2002).
[PMID: 12042863]
Heng, B. C. et al. mRNA transfection-based, feeder-free, induced pluripotent stem cells derived from adipose tissue of a 50-year-old patient. Metab. Eng. 18, 9–24 (2013).
[PMID: 23542141]