Functional network activity during errorless and trial-and-error color-name association learning.

Madoka Yamashita, Tetsuya Shimokawa, Ferdinand Peper, Rumi Tanemura
Author Information
  1. Madoka Yamashita: Department of Rehabilitation Science, Graduate School of Health Sciences Discipline, Life and Medical Sciences Area, Kobe University, Kobe, Japan. ORCID
  2. Tetsuya Shimokawa: Department of Rehabilitation Science, Graduate School of Health Sciences Discipline, Life and Medical Sciences Area, Kobe University, Kobe, Japan.
  3. Ferdinand Peper: Department of Rehabilitation Science, Graduate School of Health Sciences Discipline, Life and Medical Sciences Area, Kobe University, Kobe, Japan.
  4. Rumi Tanemura: Department of Rehabilitation Science, Graduate School of Health Sciences Discipline, Life and Medical Sciences Area, Kobe University, Kobe, Japan.

Abstract

INTRODUCTION: In cognitive rehabilitation, errorless (EL) and trial-and-error (T&E) learning are well-known methods, but their neural mechanisms are not well known. In this study, we investigated functional magnetic resonance imaging data for healthy adults during EL and T&E learning.
METHODS: Participants memorized color-name associations in both methods using Japanese traditional colors which were unfamiliar to study participants. A functional network analysis was conducted by applying graph theory. We focused on two major cognitive networks: the default mode network (DMN) and the fronto-parietal network (FPN). Also, we used "within-network connectivity" and "between-network connectivity" graph metrics. The former represents the functional connectivity strength of a subnetwork, namely the within-DMN connectivity and within-FPN connectivity, while the latter represents the number of links between the DMN and FPN.
RESULTS: The within-DMN connectivity in T&E learning was significantly higher than in EL learning. The difference between the memory scores of EL and T&E learning weakly correlated with the between-network connectivity differences between both learning tasks.
CONCLUSIONS: Our results suggest that within-DMN connectivity is important in T&E learning and that the learning benefit differences between EL and T&E approaches potentially relate to the functional integration strength between the DMN and FPN.

Keywords

References

  1. Eur J Neurosci. 2005 Jun;21(11):3161-8 [PMID: 15978024]
  2. Neuropsychol Rehabil. 2012;22(2):138-68 [PMID: 22247957]
  3. Nat Rev Neurol. 2010 Jan;6(1):15-28 [PMID: 20057496]
  4. Trends Cogn Sci. 2008 Mar;12(3):99-105 [PMID: 18262825]
  5. Neuropsychologia. 1994 Jan;32(1):53-68 [PMID: 8818154]
  6. Neuropsychologia. 2003;41(9):1230-40 [PMID: 12753962]
  7. BMC Neurol. 2013 Jun 20;13:64 [PMID: 23786651]
  8. Neuron. 2011 Nov 17;72(4):665-78 [PMID: 22099467]
  9. Asian J Psychiatr. 2018 Jun;35:115-131 [PMID: 27670776]
  10. J Neurosci. 2011 Mar 23;31(12):4407-20 [PMID: 21430142]
  11. J Neurosci. 2007 Jan 10;27(2):371-8 [PMID: 17215398]
  12. Neuropsychologia. 1998 Jan;36(1):25-36 [PMID: 9533384]
  13. Psychogeriatrics. 2010 Dec;10(4):179-86 [PMID: 21159052]
  14. Neuropsychol Rehabil. 2007 Dec;17(6):735-54 [PMID: 17852759]
  15. Clin Neurophysiol. 2005 Jan;116(1):63-74 [PMID: 15589185]
  16. J Neurosci. 2016 Nov 30;36(48):12083-12094 [PMID: 27903719]
  17. Curr Biol. 2010 Feb 23;20(4):R136-40 [PMID: 20178752]
  18. Trends Cogn Sci. 2011 Dec;15(12):558-66 [PMID: 22078930]
  19. NeuroRehabilitation. 2009;25(4):307-12 [PMID: 20037224]
  20. J Exp Psychol Learn Mem Cogn. 1985 Jul;11(3):501-18 [PMID: 3160813]
  21. Neuropsychol Rehabil. 2006 Oct;16(5):505-36 [PMID: 16952891]
  22. Neuropsychologia. 2006;44(14):2806-13 [PMID: 16901519]
  23. Trends Cogn Sci. 2011 Oct;15(10):483-506 [PMID: 21908230]
  24. Neuroimage. 2010 Oct 15;53(1):303-17 [PMID: 20600998]
  25. Neuropsychologia. 2007 Apr 8;45(7):1363-77 [PMID: 17126370]
  26. Brain Behav. 2020 Aug;10(8):e01723 [PMID: 32558312]
  27. Annu Rev Psychol. 2002;53:1-25 [PMID: 11752477]
  28. Brain. 2013 Jun;136(Pt 6):1929-41 [PMID: 23576128]
  29. Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9673-8 [PMID: 15976020]
  30. Neuropsychol Rev. 2008 Mar;18(1):1-23 [PMID: 18247118]
  31. Neuroimage. 2010 Sep;52(3):1059-69 [PMID: 19819337]
  32. Eur J Neurosci. 2017 Nov;46(9):2471-2480 [PMID: 28922510]
  33. J Neurosci. 2011 Jun 1;31(22):8259-70 [PMID: 21632947]
  34. BMC Neurosci. 2013 Mar 13;14:30 [PMID: 23496800]
  35. Nat Neurosci. 2013 Sep;16(9):1348-55 [PMID: 23892552]
  36. Nat Rev Neurosci. 2007 Sep;8(9):700-11 [PMID: 17704812]
  37. Brain Inj. 2009 Apr;23(4):291-8 [PMID: 19330592]
  38. Neuropsychologia. 2006;44(1):90-100 [PMID: 15885717]
  39. Trends Cogn Sci. 2007 Feb;11(2):49-57 [PMID: 17188554]

MeSH Term

Adult
Association Learning
Brain
Brain Mapping
Color
Female
Humans
Japan
Magnetic Resonance Imaging
Male
Middle Aged
Neural Pathways
Terminology as Topic
Young Adult

Word Cloud

Created with Highcharts 10.0.0learningT&EconnectivityELfunctionalnetworkcognitiveDMNFPNwithin-DMNrehabilitationerrorlesstrial-and-errormethodsstudycolor-namegraphconnectivity"representsstrengthdifferencesINTRODUCTION:well-knownneuralmechanismswellknowninvestigatedmagneticresonanceimagingdatahealthyadultsMETHODS:ParticipantsmemorizedassociationsusingJapanesetraditionalcolorsunfamiliarparticipantsanalysisconductedapplyingtheoryfocusedtwomajornetworks:defaultmodefronto-parietalAlsoused"within-network"between-networkmetricsformersubnetworknamelywithin-FPNlatternumberlinksRESULTS:significantlyhigherdifferencememoryscoresweaklycorrelatedbetween-networktasksCONCLUSIONS:resultssuggestimportantbenefitapproachespotentiallyrelateintegrationFunctionalactivityassociationfunctionfMRI

Similar Articles

Cited By