Brain Metabolite Changes After Anodal Transcranial Direct Current Stimulation in Autism Spectrum Disorder.

Narong Auvichayapat, Niramol Patjanasoontorn, Warinthorn Phuttharak, Chanyut Suphakunpinyo, Keattichai Keeratitanont, Orathai Tunkamnerdthai, Benchaporn Aneksan, Wanalee Klomjai, Wuttisak Boonphongsathian, Akkharawat Sinkueakunkit, Wiyada Punjaruk, Somsak Tiamkao, Paradee Auvichayapat
Author Information
  1. Narong Auvichayapat: Department of Pediatrics, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.
  2. Niramol Patjanasoontorn: Department of Psychiatry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.
  3. Warinthorn Phuttharak: Department of Radiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.
  4. Chanyut Suphakunpinyo: Department of Pediatrics, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.
  5. Keattichai Keeratitanont: Department of Radiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.
  6. Orathai Tunkamnerdthai: Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.
  7. Benchaporn Aneksan: Faculty of Physical Therapy, Mahidol University, Salaya, Thailand.
  8. Wanalee Klomjai: Faculty of Physical Therapy, Mahidol University, Salaya, Thailand.
  9. Wuttisak Boonphongsathian: Department of Radiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.
  10. Akkharawat Sinkueakunkit: Department of Anesthesiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.
  11. Wiyada Punjaruk: Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.
  12. Somsak Tiamkao: Integrated Epilepsy Research Group, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.
  13. Paradee Auvichayapat: Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.

Abstract

OBJECTIVES: Previous research has provided evidence that transcranial direct current stimulation (tDCS) can reduce severity of autism spectrum disorder (ASD); however, the exact mechanism of this effect is still unknown. Magnetic resonance spectroscopy has demonstrated low levels of brain metabolites in the anterior cingulate cortex (ACC), amygdala, and left dorsolateral prefrontal cortex (DLPFC) in individuals with ASD. The aim of this study was to investigate the effects of anodal tDCS on social functioning of individuals with ASD, as measured by the social subscale of the Autism Treatment Evaluation Checklist (ATEC), through correlations between pretreatment and posttreatment concentrations of brain metabolites in the areas of interest (DLPFC, ACC, amygdala, and locus coeruleus) and scores on the ATEC social subscale.
METHODS: Ten participants with ASD were administered 1 mA anodal tDCS to the left DLPFC for 20 min over five consecutive days. Measures of the ATEC social subscale and the concentrations of brain metabolites were performed before and immediately after the treatment.
RESULTS: The results showed a significant decrease between pretreatment and immediately posttreatment in the ATEC social subscale scores, significant increases in N-acetylaspartate (NAA)/creatine (Cr) and myoinositol (mI)/Cr concentrations, and a decrease in choline (Cho)/Cr concentrations in the left DLPFC and locus coeruleus after tDCS treatment. Significant associations between decreased ATEC social subscale scores and changed concentrations in NAA/Cr, Cho/Cr, and mI/Cr in the locus coeruleus were positive.
CONCLUSION: Findings suggest that beneficial effects of tDCS in ASD may be due to changes in neuronal and glia cell activity and synaptogenesis in the brain network of individuals with ASD. Further studies with larger sample sizes and control groups are warranted.

Keywords

References

  1. J Autism Dev Disord. 1980 Mar;10(1):91-103 [PMID: 6927682]
  2. Brain Res. 2011 Mar 22;1380:198-205 [PMID: 21185269]
  3. Brain Res. 2007 Aug 8;1162:85-97 [PMID: 17612510]
  4. PLoS One. 2012;7(7):e38786 [PMID: 22848344]
  5. J Neurosci. 2009 Apr 22;29(16):5202-6 [PMID: 19386916]
  6. Int J Neuropsychopharmacol. 2014 Oct 31;18(2): [PMID: 25522391]
  7. J Child Adolesc Psychopharmacol. 2007 Jun;17(3):348-55 [PMID: 17630868]
  8. Front Mol Neurosci. 2016 Mar 09;9:14 [PMID: 27013964]
  9. Autism Res. 2018 Feb;11(2):385-390 [PMID: 29155494]
  10. Biol Psychiatry. 2007 Nov 1;62(9):1030-7 [PMID: 17631869]
  11. Arch Gen Psychiatry. 2010 Apr;67(4):397-405 [PMID: 20368515]
  12. J Neural Transm (Vienna). 2018 Dec;125(12):1857-1866 [PMID: 30341695]
  13. Behav Neurol. 2014;2014:173073 [PMID: 25530675]
  14. Adv Med Sci. 2012 Jun 1;57(1):152-6 [PMID: 22472469]
  15. J Cereb Blood Flow Metab. 2012 Apr;32(4):696-708 [PMID: 22167234]
  16. PLoS One. 2017 Jan 6;12(1):e0169288 [PMID: 28060873]
  17. Clin Linguist Phon. 2011 Jun;25(6-7):640-54 [PMID: 21631313]
  18. J Autism Dev Disord. 2004 Dec;34(6):703-8 [PMID: 15679189]
  19. Int J Dev Neurosci. 2005 Apr-May;23(2-3):125-41 [PMID: 15749240]
  20. World J Biol Psychiatry. 2015;16(5):361-6 [PMID: 25800799]
  21. Maedica (Buchar). 2012 Sep;7(3):193-200 [PMID: 23400046]
  22. Pediatrics. 2007 Nov;120(5):1162-82 [PMID: 17967921]
  23. Physiol Rev. 2005 Jul;85(3):943-78 [PMID: 15987799]
  24. AJNR Am J Neuroradiol. 2007 Nov-Dec;28(10):1843-9 [PMID: 17921226]
  25. Transl Psychiatry. 2014 Feb 18;4:e364 [PMID: 24548879]
  26. Front Neurol. 2019 Jan 08;9:1145 [PMID: 30671014]
  27. Eur J Neurosci. 2018 Jan;47(2):115-125 [PMID: 29247487]
  28. Behav Sci (Basel). 2017 Sep 17;7(3): [PMID: 28926975]
  29. Front Neurosci. 2007 Oct 15;1(1):77-96 [PMID: 18982120]
  30. BBA Clin. 2016 Apr 12;5:170-8 [PMID: 27158592]
  31. J Autism Dev Disord. 2010 Jul;40(7):787-99 [PMID: 20054630]
  32. Behav Neurol. 2015;2015:928631 [PMID: 25861158]
  33. Neurology. 2000 Jan 11;54(1):15-9 [PMID: 10636119]
  34. J Med Invest. 2010 Feb;57(1-2):35-44 [PMID: 20299741]
  35. Pediatrics. 2016 Jul;138(1): [PMID: 27354454]
  36. Acad Radiol. 2003 Feb;10(2):145-53 [PMID: 12583565]
  37. Lancet. 2009 Nov 7;374(9701):1627-38 [PMID: 19819542]
  38. J Psychiatry Neurosci. 1999 Mar;24(2):103-15 [PMID: 10212552]
  39. J Child Adolesc Psychopharmacol. 2016 Sep;26(7):617-24 [PMID: 27218148]
  40. Biol Psychiatry. 2003 Dec 15;54(12):1355-66 [PMID: 14675799]
  41. Front Neurol. 2018 Dec 19;9:1120 [PMID: 30619071]
  42. J Med Assoc Thai. 2011 Apr;94(4):518-27 [PMID: 21591542]
  43. Biol Psychiatry. 2007 Feb 15;61(4):465-73 [PMID: 17276747]
  44. Neuron. 2018 Jul 25;99(2):413-420.e3 [PMID: 30017395]
  45. J Neuroimaging. 2008 Jul;18(3):288-95 [PMID: 18304036]
  46. Eur J Neurosci. 2012 Sep;36(6):2782-8 [PMID: 22738084]
  47. Brain Dev. 2013 Feb;35(2):139-45 [PMID: 23114054]

Word Cloud

Created with Highcharts 10.0.0ASDsocialtDCSbrainsubscaleATECconcentrationsmetabolitesDLPFClocuscoeruleusleftindividualsscorestranscranialdirectcurrentstimulationautismspectrumdisorderresonancespectroscopycortexACCamygdalaeffectsanodalAutismpretreatmentposttreatmentimmediatelytreatmentsignificantdecrease/CrOBJECTIVES:PreviousresearchprovidedevidencecanreduceseverityhoweverexactmechanismeffectstillunknownMagneticdemonstratedlowlevelsanteriorcingulatedorsolateralprefrontalaimstudyinvestigatefunctioningmeasuredTreatmentEvaluationChecklistcorrelationsareasinterestMETHODS:Tenparticipantsadministered1mA20minfiveconsecutivedaysMeasuresperformedRESULTS:resultsshowedincreasesN-acetylaspartateNAA/creatineCrmyoinositolmIcholineChoSignificantassociationsdecreasedchangedNAA/CrCho/CrmI/CrpositiveCONCLUSION:FindingssuggestbeneficialmayduechangesneuronalgliacellactivitysynaptogenesisnetworkstudieslargersamplesizescontrolgroupswarrantedBrainMetaboliteChangesAnodalTranscranialDirectCurrentStimulationSpectrumDisordermagnetic

Similar Articles

Cited By