Kamonwan Chamchoy: Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
Pornpan Pumirat: Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
Onrapak Reamtong: Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
Danaya Pakotiprapha: Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
Ubolsree Leartsakulpanich: National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani, 12120, Thailand.
Usa Boonyuen: Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand. usa.boo@mahidol.ac.th.
A bpss2242 gene, encoding a putative short-chain dehydrogenase/oxidoreductase (SDR) in Burkholderia pseudomallei, was identified and its expression was up-regulated by ten-fold when B. pseudomallei was cultured under high salt concentration. Previous study suggested that BPSS2242 plays important roles in adaptation to salt stress and pathogenesis; however, its biological functions are still unknown. Herein, we report the biochemical properties and functional characterization of BPSS2242 from B. pseudomallei. BPSS2242 exhibited NADPH-dependent reductase activity toward diacetyl and methylglyoxal, toxic electrophilic dicarbonyls. The conserved catalytic triad was identified and found to play critical roles in catalysis and cofactor binding. Tyr162 and Lys166 are involved in NADPH binding and mutation of Lys166 causes a conformational change, altering protein structure. Overexpression of BPSS2242 in Escherichia coli increased bacterial survival upon exposure to diacetyl and methylglyoxal. Importantly, the viability of B. pseudomallei encountered dicarbonyl toxicity was enhanced when cultured under high salt concentration as a result of BPSS2242 overexpression. This is the first study demonstrating that BPSS2242 is responsible for detoxification of toxic metabolites, constituting a protective system against reactive carbonyl compounds in B. pseudomallei..
References
Limmathurotsakul, D. et al. Predicted global distribution of Burkholderia pseudomallei and burden of melioidosis. Nat. Microbiol. 1, 15008 (2016).
[PMID: 27571754]
Chewapreecha, C. et al. Global and regional dissemination and evolution of Burkholderia pseudomallei. Nat. Microbiol. 2, 16263 (2017).
[PMID: 28112723]
Cheng, A. C. & Currie, B. J. Melioidosis: epidemiology, pathophysiology, and management. Clin. Microbiol. Rev. 18, 383–416 (2005).
[PMID: 15831829]
Inglis, T. J. & Sagripanti, J. L. Environmental factors that affect the survival and persistence of Burkholderia pseudomallei. Appl. Environ. Microbiol. 72, 6865–6875 (2006).
[PMID: 16980433]
Limmathurotsakul, D. et al. Increasing incidence of human melioidosis in Northeast Thailand. Am. J. Trop. Med. Hyg. 82, 1113–1117 (2010).
[PMID: 20519609]
Smith, M. D., Wuthiekanun, V., Walsh, A. L. & White, N. J. Quantitative recovery of Burkholderia pseudomallei from soil in Thailand. Trans. R. Soc. Trop. Med. Hyg. 89, 488–490 (1995).
[PMID: 8560518]
Vuddhakul, V. et al. Epidemiology of Burkholderia pseudomallei in Thailand. Am. J. Trop. Med. Hyg. 60, 458–461 (1999).
[PMID: 10466977]
Wang-Ngarm, S., Chareonsudjai, S. & Chareonsudjai, P. Physicochemical factors affecting the growth of Burkholderia pseudomallei in soil microcosm. Am. J. Trop. Med. Hyg. 90, 480–485 (2014).
[PMID: 24445210]
Kamjumphol, W., Chareonsudjai, P., Taweechaisupapong, S. & Chareonsudjai, S. Morphological alteration and survival of Burkholderia pseudomallei in soil microcosms. Am. J. Trop. Med. Hyg. 93, 1058–1065 (2015).
[PMID: 26324731]
Pumirat, P. et al. Altered secretome of Burkholderia pseudomallei induced by salt stress. Biochim. Biophys. Acta. 1794, 898–904 (2009).
[PMID: 19336033]
Pumirat, P. et al. Global transcriptional profiling of Burkholderia pseudomallei under salt stress reveals differential effects on the Bsa type III secretion system. BMC Microbiol. 10, 171 (2010).
[PMID: 20540813]
Oppermann, U. et al. Short-chain dehydrogenases/reductases (SDR): the 2002 update. Chem. Biol. Interact. 143–144, 247–253 (2003).
[PMID: 12604210]
Kallberg, Y., Oppermann, U., Jornvall, H. & Persson, B. Short-chain dehydrogenases/reductases (SDRs). Eur. J. Biolchem. 269, 4409–4417 (2002).
Pumirat, P. et al. The role of short-chain dehydrogenase/oxidoreductase, induced by salt stress, on host interaction of B. pseudomallei. BMC Microbiol. 14, 1 (2014).
[PMID: 24382268]
Sreerama, N. & Woody, R. W. Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Anal. Biochem. 287, 252–260 (2000).
[PMID: 11112271]
Alka, K., Windle, H. J., Cornally, D., Ryan, B. J. & Henehan, G. T. A short chain NAD(H)-dependent alcohol dehydrogenase (HpSCADH) from Helicobacter pylori: a role in growth under neutral and acidic conditions. Int. J. Biochem. Cell Biol. 45, 1347–1355 (2013).
[PMID: 23583739]
Basner, A. & Antranikian, G. Isolation and biochemical characterization of a glucose dehydrogenase from a hay infusion metagenome. PLoS ONE 9, e85844 (2014).
[PMID: 24454935]
Nakagawa, J. et al. Molecular characterization of mammalian dicarbonyl/L-xylulose reductase and its localization in kidney. J. Biol. Chem. 277, 17883–17891 (2002).
[PMID: 11882650]
Pokalsky, C., Wick, P., Harms, E., Lytle, F. E. & Van Etten, R. L. Fluorescence resolution of the intrinsic tryptophan residues of bovine protein tyrosyl phosphatase. J. Biol. Chem. 270, 3809–3815 (1995).
[PMID: 7876123]
Silber, P., Chung, H., Gargiulo, P. & Schulz, H. Purification and properties of a diacetyl reductase from Escherichia coli. J. Bacteriol. 118, 919–927 (1974).
[PMID: 4151453]
Ui, S., Masuda, T., Masuda, H. & Muraki, H. Purification and properties of NADPH-linked diacetyl reductase (S-acetoin forming) from Bacillus polymyxa. Agric. Biol. Chem. 51, 1447–1448 (1987).
Giovannini, P. P., Medici, A., Bergamini, C. M. & Rippa, M. Properties of diacetyl (acetoin) reductase from Bacillus stearothermophilus. Bioorg. Med. Chem. 4, 1197–1201 (1996).
[PMID: 8879540]
Vidal, I., González, J., Bernardo, A. & Martín, R. Purification and characterization of diacetyl-reducing enzymes from Staphylococcus aureus. Biochem. J. 251, 461–466 (1988).
[PMID: 3041963]
Carballo, J., Martin, R., Bernardo, A. & Gonzalez, J. Purification, characterization and some properties of diacetyl (acetoin) reductase from Enterobacter aerogenes. Eur. J. Biolchem. 198, 327–332 (1991).
Rattray, F. P., Walfridsson, M. & Nilsson, D. Purification and characterization of a diacetyl reductase from Leuconostoc pseudomesenteroides. Int. Dairy J. 10, 781–789 (2000).
Wang, Z. et al. Characterization of a stereospecific acetoin(diacetyl) reductase from Rhodococcus erythropolis WZ010 and its application for the synthesis of (2S,3S)-2,3-butanediol. Appl. Microbiol. Biotechnol. 98, 641–650 (2014).
[PMID: 23568047]
Zhao, X. et al. Identification and characterization of a novel 2,3-butanediol dehydrogenase/acetoin reductase from Corynebacterium crenatum SYPA5-5. Lett. Appl. Microbiol. 61, 573–579 (2015).
[PMID: 26393961]
Xu, G. C., Bian, Y. Q., Han, R. Z., Dong, J. J. & Ni, Y. Cloning, expression, and characterization of budC gene encoding meso-2,3-butanediol dehydrogenase from Bacillus licheniformis. Appl. Biochem. Biotechnol. 178, 604–617 (2016).
[PMID: 26494135]
Muschallik, L. et al. (R, R)-Butane-2,3-diol dehydrogenase from Bacillus clausii DSM 8716(T): cloning and expression of the bdhA-gene, and initial characterization of enzyme. J. Biotechnol. 258, 41–50 (2017).
[PMID: 28793235]
Filling, C. et al. Critical residues for structure and catalysis in short-chain dehydrogenases/reductases. J. Biol. Chem. 277, 25677–25684 (2002).
[PMID: 11976334]
Chang, Y. H., Chuang, L. Y. & Hwang, C. C. Mechanism of proton transfer in the 3alpha-hydroxysteroid dehydrogenase/carbonyl reductase from Comamonas testosteroni. J. Biol. Chem. 282, 34306–34314 (2007).
[PMID: 17893142]
Lee, C. & Park, C. Bacterial responses to glyoxal and methylglyoxal: reactive electrophilic species. Int. J. Mol. Sci. 18, 169 (2017).
[>PMCID: ]
Sonnhammer, E. L., von Heijne, G. & Krogh, A. A hidden Markov model for predicting transmembrane helices in protein sequences. Proc. Int. Conf. Intell. Syst. Mol. Biol. 6, 175–182 (1998).
[PMID: 9783223]
Seng, R. et al. Prevalence and genetic diversity of Burkholderia pseudomallei isolates in the environment near a patient’s residence in Northeast Thailand. PLoS Negl. Trop. Dis. 13, e0007348 (2019).
[PMID: 31002718]
Holden, M. T. et al. Genomic plasticity of the causative agent of melioidosis Burkholderia pseudomallei . Proc. Natl. Acad. Sci. U.S.A. 101, 14240–14245 (2004).
[PMID: 15377794]
Tuanyok, A. et al. Genomic islands from five strains of Burkholderia pseudomallei. BMC Genomics. 9, 566–566 (2008).
[PMID: 19038032]
Persson, B., Kallberg, Y., Oppermann, U. & Jornvall, H. Coenzyme-based functional assignments of short-chain dehydrogenases/reductases (SDRs). Chem. Biol. Interact. 143–144, 271–278 (2003).
[PMID: 12604213]
Bray, J. E., Marsden, B. D. & Oppermann, U. The human short-chain dehydrogenase/reductase (SDR) superfamily: a bioinformatics summary. Chem. Biol. Interact. 178, 99–109 (2009).
[PMID: 19061874]
Jay, J. M., Rivers, G. M. & Boisvert, W. E. Antimicrobial Properties of alpha-Dicarbonyl and Related Compounds. J. Food. Prot. 46, 325–329 (1983).
[PMID: 30913596]
Jay, J. M. Antimicrobial properties of diacetyl. Appl. Environ. Microbiol. 44, 525–532 (1982).
[PMID: 7137998]
Freedberg, W. B., Kistler, W. S. & Lin, E. C. Lethal synthesis of methylglyoxal by Escherichia coli during unregulated glycerol metabolism. J. Bacteriol. 108, 137–144 (1971).
[PMID: 4941552]
Hopper, D. J. & Cooper, R. A. The regulation of Escherichia coli methylglyoxal synthase; a new control site in glycolysis?. FEBS Lett. 13, 213–216 (1971).
[PMID: 11945670]
Kadner, R. J., Murphy, G. P. & Stephens, C. M. Two mechanisms for growth inhibition by elevated transport of sugar phosphates in Escherichia coli. J. Gen. Microbiol. 138, 2007–2014 (1992).
[PMID: 1479338]
Ferguson, G. P., Totemeyer, S., MacLean, M. J. & Booth, I. R. Methylglyoxal production in bacteria: suicide or survival?. Arch. Microbiol. 170, 209–218 (1998).
[PMID: 9732434]
Langa, S. et al. Short communication: Combined antimicrobial activity of reuterin and diacetyl against foodborne pathogens. J. Dairy Sci. 97, 6116–6121 (2014).
[PMID: 25087026]
Lee, C., Kim, I. & Park, C. Glyoxal detoxification in Escherichia coli K-12 by NADPH dependent aldo-keto reductases. J. Microbiol. 51, 527–530 (2013).
[PMID: 23990306]
Xu, D., Liu, X., Guo, C. & Zhao, J. Methylglyoxal detoxification by an aldo-keto reductase in the cyanobacterium Synechococcus sp. PCC 7002. Microbiology (Reading, Engl) 152, 2013–2021 (2006).
Yamauchi, Y., Hasegawa, A., Taninaka, A., Mizutani, M. & Sugimoto, Y. NADPH-dependent reductases involved in the detoxification of reactive carbonyls in plants. J. Biol. Chem. 286, 6999–7009 (2011).
[PMID: 21169366]
Perez, J. M., Arenas, F. A., Pradenas, G. A., Sandoval, J. M. & Vasquez, C. C. Escherichia coli YqhD exhibits aldehyde reductase activity and protects from the harmful effect of lipid peroxidation-derived aldehydes. J. Biol. Chem. 283, 7346–7353 (2008).
[PMID: 18211903]
Rabie, E., Serem, J. C., Oberholzer, H. M., Gaspar, A. R. & Bester, M. J. How methylglyoxal kills bacteria: an ultrastructural study. Ultrastruct. Pathol. 40, 107–111 (2016).
[PMID: 26986806]
Grant, A. W., Steel, G., Waugh, H. & Ellis, E. M. A novel aldo-keto reductase from Escherichia coli can increase resistance to methylglyoxal toxicity. FEMS Microbiol Lett 218, 93–99 (2003).
[PMID: 12583903]
Zhang, M. M., Ong, C. L., Walker, M. J. & McEwan, A. G. Defence against methylglyoxal in Group A Streptococcus: a role for Glyoxylase I in bacterial virulence and survival in neutrophils?. Pathog Dis. 122, 74 (2016).
Pumirat, P. et al. Effects of sodium chloride on heat resistance, oxidative susceptibility, motility, biofilm and plaque formation of Burkholderia pseudomallei. MicrobiologyOpen 493, 6 (2017).