A Hydrogel Drink With High Fructose Content Generates Higher Exogenous Carbohydrate Oxidation and Lower Dental Biofilm pH Compared to Two Other, Commercially Available, Carbohydrate Sports Drinks.

Stefan Pettersson, Martin Ahnoff, Fredrik Edin, Peter Lingström, Charlotte Simark Mattsson, Ulrika Andersson-Hall
Author Information
  1. Stefan Pettersson: Department of Food and Nutrition, and Sport Science, Center for Health and Performance, University of Gothenburg, Gothenburg, Sweden.
  2. Martin Ahnoff: Maurten AB, Research and Development, Gothenburg, Sweden.
  3. Fredrik Edin: Department of Food and Nutrition, and Sport Science, Center for Health and Performance, University of Gothenburg, Gothenburg, Sweden.
  4. Peter Lingström: Department of Cariology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
  5. Charlotte Simark Mattsson: Department of Cariology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
  6. Ulrika Andersson-Hall: Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.

Abstract

The purpose of this study was to evaluate the substrate oxidation of three commercially available, 14%-carbohydrate sports drinks with different compositions, osmolality, and pH for their impact on dental exposure to low pH. In a cross-over, randomized double-blinded design, 12 endurance athletes (age 31. 2 ± 7.7 years, O 65.6 ± 5.0 mL·kg) completed 180 min of cycling at 55% W. During the first 100 min of cycling, athletes consumed amylopectin starch (AP), maltodextrin+sucrose (MD+SUC), or maltodextrin+Fructose hydrogel (MD+FRU) drinks providing 95 g carbohydrate·h, followed by water intake only at 120 and 160 min. Fuel use was determined using indirect calorimetry and stable-isotope techniques. Additionally, dental biofilm pH was measured using the microtouch method in a subsample of participants ( = 6) during resting conditions before, and at different time intervals up to 45 min following a single bolus of drink. Exogenous carbohydrate oxidation (CHO) during the 2nd hour of exercise was significantly ( < 0.05) different between all three drinks: MD+FRU (1.17 ± 0.17 g·min), MD+SUC (1.01 ± 0.13 g·min), and AP (0.84 ± 0.11 g·min). At the end of exercise, CHO and blood glucose concentrations (3.54 ± 0.50, 4.07 ± 0.67, and 4.28 ± 0.47 mmol·L, respectively) were significantly lower post MD+FRU consumption than post MD+SUC and AP consumption ( < 0.05). Biofilm acidogenicity at rest demonstrated a less pronounced pH fall for MD+FRU compared to the acidulant-containing MD+SUC and AP ( < 0.05). In conclusion, while total intake of MD+FRU showed signs of completed uptake before end of monitoring, this was less so for MD+SUC, and not at all the case for AP. Thus, this study showed that despite carbohydrates being encapsulated in a hydrogel, a higher CHO was observed following MD+FRU drink ingestion compared to AP and MD+SUC consumption upon exposure to the acidic environment of the stomach. This finding may be related to the higher Fructose content of the MD+FRU drink compared with the MD+SUC and AP drinks. Furthermore, a carbohydrate solution without added acidulants, which are commonly included in commercial sport drinks, may have less deleterious effects on oral health.

Keywords

References

  1. Med Sci Sports Exerc. 2020 Feb 18;: [PMID: 32079920]
  2. Br J Sports Med. 2015 Jan;49(1):14-9 [PMID: 25388551]
  3. Sports Med. 2000 Mar;29(3):181-209 [PMID: 10739268]
  4. Med Sci Sports Exerc. 2013 Sep;45(9):1814-24 [PMID: 23949097]
  5. Sports Med. 2011 Sep 1;41(9):773-92 [PMID: 21846165]
  6. Physiol Rep. 2018 Jan;6(1): [PMID: 29333721]
  7. J Appl Physiol (1985). 1986 Mar;60(3):1035-42 [PMID: 3514570]
  8. Eur J Sport Sci. 2017 Aug;17(7):874-884 [PMID: 28441908]
  9. Ann N Y Acad Sci. 2016 Feb;1365(1):15-32 [PMID: 25817456]
  10. Caries Res. 1997;31(1):44-9 [PMID: 8955994]
  11. Am J Physiol. 1993 Sep;265(3 Pt 1):E380-91 [PMID: 8214047]
  12. Med Sci Sports Exerc. 2005 Sep;37(9):1510-6 [PMID: 16177602]
  13. Med Sci Sports Exerc. 1989 Oct;21(5):540-9 [PMID: 2691815]
  14. Med Sci Sports Exerc. 1995 Dec;27(12):1607-15 [PMID: 8614315]
  15. Can J Sport Sci. 1991 Mar;16(1):23-9 [PMID: 1645211]
  16. J Am Dent Assoc. 2016 Apr;147(4):255-63 [PMID: 26653863]
  17. Med Sci Sports Exerc. 2013 Feb;45(2):336-41 [PMID: 22968309]
  18. Food Funct. 2019 Dec 11;10(12):7892-7899 [PMID: 31793602]
  19. Int J Sport Nutr Exerc Metab. 2019 Oct 17;:1-9 [PMID: 31629348]
  20. J Dent Res. 1993 May;72(5):865-70 [PMID: 8501283]
  21. J Strength Cond Res. 2015 Jul;29(7):2056-70 [PMID: 25559901]
  22. Med Sci Sports Exerc. 2020 Jun;52(6):1376-1384 [PMID: 31977640]
  23. Nutrition. 2009 Sep;25(9):905-13 [PMID: 19487107]
  24. J Int Soc Sports Nutr. 2019 Oct 26;16(1):46 [PMID: 31655603]
  25. Am J Physiol. 1990 Jul;259(1 Pt 2):R163-71 [PMID: 2115744]
  26. Med Sci Sports Exerc. 2005 Jan;37(1):39-44 [PMID: 15632665]
  27. Diabetes. 1981 Dec;30(12):983-9 [PMID: 7030833]
  28. J Appl Physiol (1985). 1990 Sep;69(3):1047-52 [PMID: 2123176]
  29. Restor Dent Endod. 2016 Nov;41(4):255-261 [PMID: 27847746]
  30. Sports Med. 2015 Nov;45(11):1561-76 [PMID: 26373645]
  31. Metabolism. 1976 Dec;25(12):1575-82 [PMID: 994839]
  32. J Appl Physiol Respir Environ Exerc Physiol. 1984 Feb;56(2):315-20 [PMID: 6706743]
  33. J Prosthodont. 2003 Mar;12(1):21-5 [PMID: 12677608]
  34. Sports Med. 1991 Feb;11(2):102-24 [PMID: 2017604]
  35. J Appl Physiol (1985). 2004 Apr;96(4):1285-91 [PMID: 14657044]
  36. Int J Sport Nutr. 1992 Mar;2(1):48-59 [PMID: 1338583]
  37. Neurogastroenterol Motil. 2007 Nov;19(11):879-86 [PMID: 17973639]
  38. J Appl Physiol (1985). 2010 Jun;108(6):1520-9 [PMID: 20299609]
  39. Clin Gastroenterol Hepatol. 2016 Feb;14(2):226-33.e1-3 [PMID: 26492847]
  40. J Appl Physiol (1985). 1994 Sep;77(3):1537-41 [PMID: 7836162]
  41. J Appl Physiol (1985). 1993 Dec;75(6):2774-80 [PMID: 8125902]
  42. Appl Physiol Nutr Metab. 2020 Jun;45(6):675-678 [PMID: 31967853]
  43. J Dent. 2006 Jan;34(1):2-11 [PMID: 16157439]
  44. Med Sci Sports Exerc. 2007 Feb;39(2):377-90 [PMID: 17277604]
  45. J Nutr. 1991 Jun;121(6):795-9 [PMID: 1851824]
  46. Curr Opin Clin Nutr Metab Care. 2010 Jul;13(4):452-7 [PMID: 20574242]
  47. Br J Sports Med. 2013 Nov;47(16):1054-8 [PMID: 24068332]
  48. Scientifica (Cairo). 2016;2016:5027283 [PMID: 27051556]
  49. Appl Physiol Nutr Metab. 2020 May 4;: [PMID: 32365303]
  50. Br J Nutr. 2005 Apr;93(4):485-92 [PMID: 15946410]
  51. Nutrients. 2016 Jan 14;8(1): [PMID: 26784222]
  52. Med Sci Sports Exerc. 2010 Nov;42(11):2030-7 [PMID: 20404762]
  53. Am J Physiol. 1999 Apr;276(4):E672-83 [PMID: 10198303]
  54. Appl Physiol Nutr Metab. 2014 Sep;39(9):998-1011 [PMID: 24951297]

Word Cloud

Created with Highcharts 10.0.00±APMD+SUCMD+FRUpHdrinksminoxidationdifferentdentalathletesdrinkCHO<05g·minconsumptionlesscomparedstudysubstratethreesportsexposureendurance76completedcyclinghydrogelintakeusingfollowingExogenouscarbohydrateexercisesignificantly117end4postBiofilmshowedhighermayCarbohydratepurposeevaluatecommerciallyavailable14%-carbohydratecompositionsosmolalityimpactlowcross-overrandomizeddouble-blindeddesign12age312yearsO655mL·kg18055%Wfirst100consumedamylopectinstarchmaltodextrin+sucrosemaltodextrin+fructoseproviding95gcarbohydrate·hfollowedwater120160Fuelusedeterminedindirectcalorimetrystable-isotopetechniquesAdditionallybiofilmmeasuredmicrotouchmethodsubsampleparticipants=restingconditionstimeintervals45singlebolus2ndhourdrinks:01138411bloodglucoseconcentrations3545007672847mmol·Lrespectivelyloweracidogenicityrestdemonstratedpronouncedfallacidulant-containingconclusiontotalsignsuptakemonitoringcaseThusdespitecarbohydratesencapsulatedobservedingestionuponacidicenvironmentstomachfindingrelatedfructosecontentFurthermoresolutionwithoutaddedacidulantscommonlyincludedcommercialsportdeleteriouseffectsoralhealthHydrogelDrinkHighFructoseContentGeneratesHigherOxidationLowerDentalComparedTwoCommerciallyAvailableSportsDrinkscariesnutritionstableisotope

Similar Articles

Cited By (7)