Stable biomarker identification for predicting schizophrenia in the human connectome.

Leonardo Gutiérrez-Gómez, Jakub Vohryzek, Benjamin Chiêm, Philipp S Baumann, Philippe Conus, Kim Do Cuenod, Patric Hagmann, Jean-Charles Delvenne
Author Information
  1. Leonardo Gutiérrez-Gómez: Institute for Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM), Université catholique de Louvain, Louvain-la-Neuve, Belgium. Electronic address: leonardo.gutierrez@uclouvain.be.
  2. Jakub Vohryzek: Department of Psychiatry, University of Oxford, Oxford, United Kingdom; Department of Radiology, University Hospital Centre and University of Lausanne, Lausanne, Switzerland. Electronic address: jakub.vohryzek@queens.ox.ac.uk.
  3. Benjamin Chiêm: Institute for Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM), Université catholique de Louvain, Louvain-la-Neuve, Belgium. Electronic address: benjamin.chiem@uclouvain.be.
  4. Philipp S Baumann: Service of General Psychiatry and Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland. Electronic address: philipp.Baumann@chuv.ch.
  5. Philippe Conus: Service of General Psychiatry and Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland. Electronic address: philippe.Conus@chuv.ch.
  6. Kim Do Cuenod: Service of General Psychiatry and Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland. Electronic address: Kim.Do@chuv.ch.
  7. Patric Hagmann: Department of Radiology, University Hospital Centre and University of Lausanne, Lausanne, Switzerland. Electronic address: Patric.Hagmann@chuv.ch.
  8. Jean-Charles Delvenne: Institute for Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM), Université catholique de Louvain, Louvain-la-Neuve, Belgium; Center for Operations Research and Econometrics (CORE), Université catholique de Louvain, Louvain-la-Neuve, Belgium. Electronic address: jean-charles.delvenne@uclouvain.be.

Abstract

Schizophrenia, as a psychiatric disorder, has recognized brain alterations both at the structural and at the functional magnetic resonance imaging level. The developing field of connectomics has attracted much attention as it allows researchers to take advantage of powerful tools of network analysis in order to study structural and functional connectivity abnormalities in schizophrenia. Many methods have been proposed to identify biomarkers in schizophrenia, focusing mainly on improving the classification performance or performing statistical comparisons between groups. However, the stability of biomarkers selection has been for long overlooked in the connectomics field. In this study, we follow a machine learning approach where the identification of biomarkers is addressed as a feature selection problem for a classification task. We perform a recursive feature elimination and support vector machines (RFE-SVM) approach to identify the most meaningful biomarkers from the structural, functional, and multi-modal connectomes of healthy controls and patients. Furthermore, the stability of the retrieved biomarkers is assessed across different subsamplings of the dataset, allowing us to identify the affected core of the pathology. Considering our technique altogether, it demonstrates a principled way to achieve both accurate and stable biomarkers while highlighting the importance of multi-modal approaches to brain pathology as they tend to reveal complementary information.

References

  1. Netw Neurosci. 2020 Apr 01;4(2):338-373 [PMID: 32537531]
  2. Comput Biol Chem. 2010 Aug;34(4):215-25 [PMID: 20702140]
  3. J Neurosci. 2013 Jul 3;33(27):11239-52 [PMID: 23825427]
  4. Neuroimage. 2013 Oct 15;80:515-26 [PMID: 23623973]
  5. Schizophr Res. 2009 Mar;108(1-3):104-13 [PMID: 19157788]
  6. Nature. 2010 Nov 11;468(7321):203-12 [PMID: 21068828]
  7. J Neurosci. 2008 Sep 10;28(37):9239-48 [PMID: 18784304]
  8. PLoS Biol. 2008 Jul 1;6(7):e159 [PMID: 18597554]
  9. Medicine (Baltimore). 2016 Jul;95(30):e3973 [PMID: 27472673]
  10. Biol Psychiatry. 2010 Feb 1;67(3):255-62 [PMID: 19897178]
  11. Neuroimage. 2002 Oct;17(2):825-41 [PMID: 12377157]
  12. Neuroimage. 2008 Oct 15;43(1):44-58 [PMID: 18672070]
  13. J Neurosci Methods. 2012 Jan 30;203(2):386-97 [PMID: 22001222]
  14. Neuroimage. 2014 Mar;88:79-90 [PMID: 24269273]
  15. Bioinformatics. 2007 Oct 1;23(19):2507-17 [PMID: 17720704]
  16. Proc Natl Acad Sci U S A. 2009 Feb 10;106(6):2035-40 [PMID: 19188601]
  17. J Neurosci. 2010 Jul 14;30(28):9477-87 [PMID: 20631176]
  18. Hum Brain Mapp. 2015 Jan;36(1):354-66 [PMID: 25213204]
  19. Biol Psychiatry. 2010 Jul 1;68(1):61-9 [PMID: 20497901]
  20. PLoS One. 2012;7(12):e48121 [PMID: 23272041]
  21. Magn Reson Med. 2005 Dec;54(6):1377-86 [PMID: 16247738]
  22. Neuropsychol Rev. 2014 Mar;24(1):32-48 [PMID: 24500505]
  23. PLoS Comput Biol. 2008 Oct;4(10):e1000173 [PMID: 18974822]
  24. PLoS Comput Biol. 2005 Sep;1(4):e42 [PMID: 16201007]
  25. Neuroimage. 2012 Aug 15;62(2):782-90 [PMID: 21979382]
  26. Neuroimage. 2017 Feb 15;147:736-745 [PMID: 27865923]
  27. Neuroimage. 2012 Oct 1;62(4):2296-314 [PMID: 22387165]
  28. Bioinformatics. 2010 Feb 1;26(3):392-8 [PMID: 19942583]
  29. Neuroimage. 2017 Jul 15;155:490-502 [PMID: 28412440]
  30. Transl Psychiatry. 2019 Feb 4;9(1):62 [PMID: 30718455]
  31. Neuroimage. 2012 Feb 1;59(3):2187-95 [PMID: 22008370]
  32. Neuroinformatics. 2010 Dec;8(4):213-29 [PMID: 20607449]
  33. Eur Arch Psychiatry Clin Neurosci. 1999;249(4):174-9 [PMID: 10449592]
  34. Neuroimage Clin. 2014 May 09;4:779-87 [PMID: 24936428]
  35. Neuroimage. 2018 Sep;178:238-254 [PMID: 29753842]
  36. Schizophr Res. 2011 Apr;127(1-3):46-57 [PMID: 21300524]
  37. Magn Reson Med. 1996 Mar;35(3):346-55 [PMID: 8699946]

MeSH Term

Biomarkers
Brain
Connectome
Humans
Magnetic Resonance Imaging
Schizophrenia
Support Vector Machine

Chemicals

Biomarkers

Word Cloud

Created with Highcharts 10.0.0biomarkersstructuralfunctionalschizophreniaidentifybrainfieldconnectomicsstudyclassificationstabilityselectionapproachidentificationfeaturemulti-modalpathologySchizophreniapsychiatricdisorderrecognizedalterationsmagneticresonanceimagingleveldevelopingattractedmuchattentionallowsresearcherstakeadvantagepowerfultoolsnetworkanalysisorderconnectivityabnormalitiesManymethodsproposedfocusingmainlyimprovingperformanceperformingstatisticalcomparisonsgroupsHoweverlongoverlookedfollowmachinelearningaddressedproblemtaskperformrecursiveeliminationsupportvectormachinesRFE-SVMmeaningfulconnectomeshealthycontrolspatientsFurthermoreretrievedassessedacrossdifferentsubsamplingsdatasetallowingusaffectedcoreConsideringtechniquealtogetherdemonstratesprincipledwayachieveaccuratestablehighlightingimportanceapproachestendrevealcomplementaryinformationStablebiomarkerpredictinghumanconnectome

Similar Articles

Cited By