Is a Long Non-coding RNA Locus That Regulates Expression.

Sébastien Soubeyrand, Majid Nikpay, Paulina Lau, Adam Turner, Huy-Dung Hoang, Tommy Alain, Ruth McPherson
Author Information
  1. Sébastien Soubeyrand: Atherogenomics Laboratory, University of Ottawa Heart Institute, Ottawa, ON, Canada.
  2. Majid Nikpay: Ruddy Canadian Cardiovascular Genetics Centre, University of Ottawa Heart Institute, Ottawa, ON, Canada.
  3. Paulina Lau: Atherogenomics Laboratory, University of Ottawa Heart Institute, Ottawa, ON, Canada.
  4. Adam Turner: Center for Public Health Genomics, University of Virginia, Charlottesville, VA, United States.
  5. Huy-Dung Hoang: Children Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada.
  6. Tommy Alain: Children Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada.
  7. Ruth McPherson: Atherogenomics Laboratory, University of Ottawa Heart Institute, Ottawa, ON, Canada.

Abstract

Genome-wide association studies have identified several genetic loci linked to coronary artery disease (CAD) most of them located in non-protein coding regions of the genome. One such locus is the CAD Associated Region between and (CARMA), a ∼18 kb haplotype that was recently shown to regulate vicinal protein coding genes. Here, we further investigate the region by examining a long non-coding RNA gene locus (RP11-326A19.4/AC013565) abutting the CARMA region. Expression-genotype correlation analyses of public databases indicate that levels are influenced by CAD associated variants suggesting that it might have cardioprotective functions. We found to be stably expressed at relatively low levels and enriched in the cytosol. function was investigated by several gene targeting approaches in HEK293T: inactive CRISPR fusion proteins, antisense, overexpression and inactivation by CRISPR-mediated knock-out. Modest increases in (3-4×) obtained via CRISPRa using distinct single-guided RNAs did not result in consistent transcriptome effects. By contrast, deletion or reduced expression via CRISPRi increased levels, suggesting that is contributing to reduce expression under basal conditions. While future investigations are required to clarify the mechanism(s) by which acts on , integrative bioinformatic analyses of the transcriptome of deleted cells suggest that this locus may also be involved in leucine metabolism, splicing, transcriptional regulation and Shwachman-Bodian-Diamond syndrome protein function.

Keywords

References

  1. Nucleic Acids Res. 2015 Mar 31;43(6):3389-404 [PMID: 25712100]
  2. Nat Methods. 2015 Apr;12(4):326-8 [PMID: 25730490]
  3. Nucleic Acids Res. 2019 Jul 2;47(W1):W199-W205 [PMID: 31114916]
  4. Genomics Proteomics Bioinformatics. 2017 Jun;15(3):196-200 [PMID: 28533025]
  5. Sci Rep. 2017 Jan 13;7:40636 [PMID: 28084441]
  6. PLoS One. 2019 Oct 28;14(10):e0224113 [PMID: 31658298]
  7. Genome Res. 2012 Sep;22(9):1775-89 [PMID: 22955988]
  8. Cell. 2007 Jun 29;129(7):1311-23 [PMID: 17604720]
  9. Adv Biol Regul. 2018 Jan;67:109-127 [PMID: 28942353]
  10. Mol Cell Biol. 2010 Apr;30(7):1718-28 [PMID: 20123975]
  11. Dev Biol. 2018 Mar 15;435(2):109-121 [PMID: 29397877]
  12. Cell Rep. 2018 Feb 13;22(7):1849-1860 [PMID: 29444436]
  13. Trends Cell Biol. 2015 Oct;25(10):623-632 [PMID: 26410408]
  14. PLoS One. 2011;6(6):e20727 [PMID: 21695142]
  15. Annu Rev Physiol. 2012;74:13-40 [PMID: 22017177]
  16. Nat Methods. 2018 Aug;15(8):611-616 [PMID: 30013045]
  17. Trends Genet. 2014 Apr;30(4):121-3 [PMID: 24613441]
  18. RNA Biol. 2017 Dec 2;14(12):1705-1714 [PMID: 28837398]
  19. Nat Protoc. 2009;4(1):44-57 [PMID: 19131956]
  20. Proteomics. 2015 Sep;15(18):3163-8 [PMID: 25656970]
  21. Bioinformatics. 2018 Jul 1;34(13):2185-2194 [PMID: 29462250]
  22. Nucleic Acids Res. 2014 Jan;42(Database issue):D859-64 [PMID: 24185699]
  23. Wiley Interdiscip Rev RNA. 2018 May;9(3):e1471 [PMID: 29516680]
  24. Genes Dev. 2011 May 1;25(9):917-29 [PMID: 21536732]
  25. Nat Genet. 2003 Jan;33(1):97-101 [PMID: 12496757]
  26. J Cell Biochem. 2009 Apr 15;106(6):957-66 [PMID: 19204935]
  27. Nature. 2016 Nov 17;539(7629):452-455 [PMID: 27783602]
  28. Sci Rep. 2017 Jul 17;7(1):5574 [PMID: 28717196]
  29. Sci Rep. 2018 Nov 6;8(1):16385 [PMID: 30401954]
  30. Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50 [PMID: 16199517]
  31. FEBS Lett. 2013 Oct 1;587(19):3175-81 [PMID: 23973260]
  32. Genome Biol. 2019 Oct 9;20(1):203 [PMID: 31597578]
  33. BMC Bioinformatics. 2012 Jun 19;13:136 [PMID: 22713124]
  34. Atherosclerosis. 2019 May;284:11-17 [PMID: 30861420]
  35. Nat Rev Mol Cell Biol. 2018 Mar;19(3):143-157 [PMID: 29138516]
  36. Science. 2013 Feb 15;339(6121):819-23 [PMID: 23287718]
  37. Nat Struct Mol Biol. 2015 Nov;22(11):914-9 [PMID: 26479198]

Word Cloud

Created with Highcharts 10.0.0CADlocusgenelevelsexpressionseveralcodingCARMAproteinregionRNARP11-326A19analysessuggestingfunctionviatranscriptomeGenome-wideassociationstudiesidentifiedgeneticlocilinkedcoronaryarterydiseaselocatednon-proteinregionsgenomeOneAssociatedRegion∼18kbhaplotyperecentlyshownregulatevicinalgenesinvestigateexamininglongnon-coding4/AC013565abuttingExpression-genotypecorrelationpublicdatabasesindicateinfluencedassociatedvariantsmightcardioprotectivefunctionsfoundstablyexpressedrelativelylowenrichedcytosolinvestigatedtargetingapproachesHEK293T:inactiveCRISPRfusionproteinsantisenseoverexpressioninactivationCRISPR-mediatedknock-outModestincreases3-4×obtainedCRISPRausingdistinctsingle-guidedRNAsresultconsistenteffectscontrastdeletionreducedCRISPRiincreasedcontributingreducebasalconditionsfutureinvestigationsrequiredclarifymechanismsactsintegrativebioinformaticdeletedcellssuggestmayalsoinvolvedleucinemetabolismsplicingtranscriptionalregulationShwachman-Bodian-DiamondsyndromeLongNon-codingLocusRegulatesExpressionCARMALMFGE84SBDSlncRNAtranscription

Similar Articles

Cited By (2)