A Fiber-Optic Gas Sensor and Method for the Measurement of Refractive Index Dispersion in NIR.

Matej Njegovec, Denis Donlagic
Author Information
  1. Matej Njegovec: Laboratory for Electro Optics and Sensor Systems, Faculty of Electrical Engineering and Computer Science, University of Maribor, Koroska cesta 46, 2000 Maribor, Slovenia. ORCID
  2. Denis Donlagic: Laboratory for Electro Optics and Sensor Systems, Faculty of Electrical Engineering and Computer Science, University of Maribor, Koroska cesta 46, 2000 Maribor, Slovenia.

Abstract

This paper presents a method for gas concentration determination based on the measurement of the refractive index dispersion of a gas near the gas resonance in the near-infrared region (NIR). The gas refractive index dispersion line shape is reconstructed from the variation in the spectral interference fringes' periods, which are generated by a low-finesse Fabry-Perot interferometer during the DFB diode's linear-over-time optical frequency sweep around the gas resonance frequency. The entire sensing system was modeled and then verified experimentally, for an example of a low concentration methane-air mixture. We demonstrate experimentally a refractive index dispersion measurement resolution of 2 × 10 refractive index units (RIU), which corresponds to a change in methane concentration in air of 0.04 vol% at the resonant frequency of 181.285 THz (1653.7 nm). The experimental and modeling results show an excellent agreement. The presented system utilizes a very simple optical design and has good potential for the realization of cost-efficient gas sensors that can be operated remotely through standard telecom optical fibers.

Keywords

References

  1. Opt Lett. 2018 Jun 15;43(12):2872-2875 [PMID: 29905711]
  2. Anal Chem. 2017 Jun 6;89(11):5916-5922 [PMID: 28480710]
  3. Sensors (Basel). 2019 Jul 31;19(15): [PMID: 31370141]
  4. Opt Lett. 2015 Nov 1;40(21):4891-4 [PMID: 26512476]
  5. Appl Opt. 1983 Nov 15;22(22):3500-2 [PMID: 18200223]
  6. Sensors (Basel). 2012 Nov 28;12(12):16466-81 [PMID: 23443389]
  7. Opt Express. 2014 Jun 16;22(12):15143-53 [PMID: 24977607]
  8. Anal Chem. 2014 Jul 1;86(13):6487-94 [PMID: 24895840]
  9. Sci Rep. 2020 Apr 10;10(1):6185 [PMID: 32277096]
  10. Sensors (Basel). 2020 Feb 26;20(5): [PMID: 32110937]
  11. Opt Express. 2016 May 16;24(10):A878-84 [PMID: 27409960]
  12. ACS Sens. 2019 Jul 26;4(7):1899-1908 [PMID: 31184106]
  13. Appl Opt. 1997 Jul 1;36(19):4526-34 [PMID: 18259246]
  14. Opt Express. 2018 Sep 3;26(18):23868-23882 [PMID: 30184882]
  15. Sensors (Basel). 2020 Feb 21;20(4): [PMID: 32098108]

Grants

  1. P2-0368/Javna Agencija za Raziskovalno Dejavnost RS
  2. J2-8192/Javna Agencija za Raziskovalno Dejavnost RS

Word Cloud

Created with Highcharts 10.0.0gasrefractiveindexdispersionconcentrationopticalfrequencymeasurementresonanceNIRFabry-Perotsensingsystemexperimentallymethanesensorpaperpresentsmethoddeterminationbasednearnear-infraredregionlineshapereconstructedvariationspectralinterferencefringes'periodsgeneratedlow-finesseinterferometerDFBdiode'slinear-over-timesweeparoundentiremodeledverifiedexamplelowmethane-airmixturedemonstrateresolution2×10unitsRIUcorrespondschangeair004vol%resonant181285THz16537nmexperimentalmodelingresultsshowexcellentagreementpresentedutilizessimpledesigngoodpotentialrealizationcost-efficientsensorscanoperatedremotelystandardtelecomfibersFiber-OpticGasSensorMethodMeasurementRefractiveIndexDispersionanomalous

Similar Articles

Cited By