Machine learning approach to predict medication overuse in migraine patients.

Patrizia Ferroni, Fabio M Zanzotto, Noemi Scarpato, Antonella Spila, Luisa Fofi, Gabriella Egeo, Alessandro Rullo, Raffaele Palmirotta, Piero Barbanti, Fiorella Guadagni
Author Information
  1. Patrizia Ferroni: BioBIM (InterInstitutional Multidisciplinary Biobank), IRCCS San Raffaele Pisana, Via di Val Cannuta 247, 00166 Rome, Italy.
  2. Fabio M Zanzotto: Department of Enterprise Engineering, University of Rome "Tor Vergata", Viale Oxford 81, 00133 Rome, Italy.
  3. Noemi Scarpato: Dept. of Human Sciences & Quality of Life Promotion, San Raffaele Roma Open University, Via di Val Cannuta 247, 00166 Rome, Italy.
  4. Antonella Spila: BioBIM (InterInstitutional Multidisciplinary Biobank), IRCCS San Raffaele Pisana, Via di Val Cannuta 247, 00166 Rome, Italy.
  5. Luisa Fofi: Headache and Pain Unit, Dept. of Neurological, Motor and Sensorial Sciences, IRCCS San Raffaele Pisana, Via di Val Cannuta 247, 00166 Rome, Italy.
  6. Gabriella Egeo: Headache and Pain Unit, Dept. of Neurological, Motor and Sensorial Sciences, IRCCS San Raffaele Pisana, Via di Val Cannuta 247, 00166 Rome, Italy.
  7. Alessandro Rullo: Neatec S.p.A., Via Campi Flegrei, 34, 80078 Pozzuoli, Naples, Italy.
  8. Raffaele Palmirotta: Department of Biomedical Sciences & Human Oncology, University of Bari 'Aldo Moro', Bari, Italy.
  9. Piero Barbanti: Dept. of Human Sciences & Quality of Life Promotion, San Raffaele Roma Open University, Via di Val Cannuta 247, 00166 Rome, Italy.
  10. Fiorella Guadagni: BioBIM (InterInstitutional Multidisciplinary Biobank), IRCCS San Raffaele Pisana, Via di Val Cannuta 247, 00166 Rome, Italy.

Abstract

Machine learning (ML) is largely used to develop automatic predictors in migraine classification but automatic predictors for medication overuse (MO) in migraine are still in their infancy. Thus, to understand the benefits of ML in MO prediction, we explored an automated predictor to estimate MO risk in migraine. To achieve this objective, a study was designed to analyze the performance of a customized ML-based decision support system that combines support vector machines and Random Optimization (RO-MO). We used RO-MO to extract prognostic information from demographic, clinical and biochemical data. Using a dataset of 777 consecutive migraine patients we derived a set of predictors with discriminatory power for MO higher than that observed for baseline SVM. The best four were incorporated into the final RO-MO decision support system and risk evaluation on a five-level stratification was performed. ROC analysis resulted in a c-statistic of 0.83 with a sensitivity and specificity of 0.69 and 0.87, respectively, and an accuracy of 0.87 when MO was predicted by at least three RO-MO models. Logistic regression analysis confirmed that the derived RO-MO system could effectively predict MO with ORs of 5.7 and 21.0 for patients classified as probably (3 predictors positive), or definitely at risk of MO (4 predictors positive), respectively. In conclusion, a combination of ML and RO - taking into consideration clinical/biochemical features, drug exposure and lifestyle - might represent a valuable approach to MO prediction in migraine and holds the potential for improving model precision through weighting the relative importance of attributes.

Keywords

References

  1. Cephalalgia. 2018 Jan;38(1):1-211 [PMID: 29368949]
  2. Curr Pain Headache Rep. 2019 Jul 26;23(8):60 [PMID: 31346781]
  3. Cancers (Basel). 2019 Mar 07;11(3): [PMID: 30866535]
  4. J Med Signals Sens. 2019 Aug 29;9(3):174-180 [PMID: 31544057]
  5. Curr Med Res Opin. 2020 Jan;36(1):51-61 [PMID: 31422701]
  6. BMC Med Inform Decis Mak. 2017 Apr 13;17(1):38 [PMID: 28407777]
  7. Neurol Sci. 2013 Sep;34(9):1659-63 [PMID: 23354611]
  8. Neurology. 2007 Feb 20;68(8):591-6 [PMID: 17182975]
  9. Lancet Neurol. 2019 Sep;18(9):891-902 [PMID: 31174999]
  10. Eur J Neurol. 2015 Aug;22(8):1228-34 [PMID: 25981360]
  11. Pract Neurol. 2019 Oct;19(5):399-403 [PMID: 31273078]
  12. J Headache Pain. 2018 May 24;19(1):38 [PMID: 29797100]
  13. Cephalalgia. 2016 Dec;36(14):1334-1340 [PMID: 26858260]
  14. Headache. 2015 Mar;55(3):439-41 [PMID: 25523108]
  15. BMC Med Inform Decis Mak. 2018 Nov 13;18(1):98 [PMID: 30424769]
  16. Med Clin North Am. 2019 Mar;103(2):215-233 [PMID: 30704678]
  17. Nat Rev Neurol. 2016 Aug;12(8):455-64 [PMID: 27389092]
  18. Cephalalgia. 2017 Aug;37(9):828-844 [PMID: 27306407]
  19. Neurology. 2003 Jul 22;61(2):160-4 [PMID: 12874392]
  20. Dis Markers. 2017;2017:8781379 [PMID: 29104344]
  21. Biomed Eng Online. 2018 Oct 11;17(1):138 [PMID: 30314437]
  22. IEEE Comput Intell Mag. 2018 Aug;13(3):20-31 [PMID: 30467458]
  23. Cephalalgia. 2019 Aug;39(9):1143-1155 [PMID: 30913908]
  24. Med Decis Making. 2017 Feb;37(2):234-242 [PMID: 27491558]
  25. Neurol Sci. 2019 Aug;40(8):1717-1724 [PMID: 30972508]
  26. Headache. 2016 Nov;56(10):1635-1648 [PMID: 27731896]
  27. Comput Math Methods Med. 2015;2015:465192 [PMID: 26075014]
  28. Heliyon. 2019 Feb 28;5(2):e01043 [PMID: 30886915]
  29. Headache. 2008 Sep;48(8):1157-68 [PMID: 18808500]
  30. Pain. 2012 Jan;153(1):56-61 [PMID: 22018971]
  31. Headache. 2008 Jan;48(1):72-8 [PMID: 17868352]
  32. Lancet Haematol. 2018 Sep;5(9):e391 [PMID: 30172343]
  33. Neurology. 2004 Mar 9;62(5):788-90 [PMID: 15007133]

Word Cloud

Created with Highcharts 10.0.0MOmigraineMachinepredictorsRO-MO0MLsupportlearningoveruserisksystempatientsLearningusedautomaticmedicationpredictiondecisionRandomOptimizationderivedSVMROCanalysis87respectivelypredictpositiveRO-approachArtificialpolymorphismDecisionSupportMedicationlargelydevelopclassificationstillinfancyThusunderstandbenefitsexploredautomatedpredictorestimateachieveobjectivestudydesignedanalyzeperformancecustomizedML-basedcombinesvectormachinesextractprognosticinformationdemographicclinicalbiochemicaldataUsingdataset777consecutivesetdiscriminatorypowerhigherobservedbaselinebestfourincorporatedfinalevaluationfive-levelstratificationperformedresultedc-statistic83sensitivityspecificity69accuracypredictedleastthreemodelsLogisticregressionconfirmedeffectivelyORs5721classifiedprobably3definitely4conclusioncombinationtakingconsiderationclinical/biochemicalfeaturesdrugexposurelifestylemightrepresentvaluableholdspotentialimprovingmodelprecisionweightingrelativeimportanceattributesAIIntelligenceAUCAreaCurveintelligenceBMIbodymassindexCIConfidenceIntervalDBH19-bpI/DDopamine-Beta-Hydroxylase19bpinsertion/deletionDSSSystemsystemsICTInformationCommunicationsTechnologyKELPKernel-basedPlatformLRslikelihoodratiosMKLMultipleKernelOveruseMigraineNSAIDnonsteroidalanti-inflammatorydrugsPVIPredictiveValueImputationReceiveroperatingcharacteristicSEStandardErrorVector

Similar Articles

Cited By