Context for interpreting equilibrium climate sensitivity and transient climate response from the CMIP6 Earth system models.

Gerald A Meehl, Catherine A Senior, Veronika Eyring, Gregory Flato, Jean-Francois Lamarque, Ronald J Stouffer, Karl E Taylor, Manuel Schlund
Author Information
  1. Gerald A Meehl: National Center for Atmospheric Research, Boulder, CO, USA. ORCID
  2. Catherine A Senior: Met Office Hadley Centre, Exeter, UK. ORCID
  3. Veronika Eyring: Deutsches Zentrum f��r Luft- und Raumfahrt (DLR), Institut f��r Physik der Atmosph��re, Oberpfaffenhofen, Germany. ORCID
  4. Gregory Flato: Canadian Centre for Modelling and Analysis, Environment and Climate Change Canada, Victoria, Canada. ORCID
  5. Jean-Francois Lamarque: National Center for Atmospheric Research, Boulder, CO, USA. ORCID
  6. Ronald J Stouffer: University of Arizona, Tucson, AZ, USA. ORCID
  7. Karl E Taylor: PCMDI, Livermore, CA, USA. ORCID
  8. Manuel Schlund: Deutsches Zentrum f��r Luft- und Raumfahrt (DLR), Institut f��r Physik der Atmosph��re, Oberpfaffenhofen, Germany. ORCID

Abstract

For the current generation of earth system models participating in the Coupled Model Intercomparison Project Phase 6 (CMIP6), the range of equilibrium climate sensitivity (ECS, a hypothetical value of global warming at equilibrium for a doubling of CO) is 1.8��C to 5.6��C, the largest of any generation of models dating to the 1990s. Meanwhile, the range of transient climate response (TCR, the surface temperature warming around the time of CO doubling in a 1% per year CO increase simulation) for the CMIP6 models of 1.7��C (1.3��C to 3.0��C) is only slightly larger than for the CMIP3 and CMIP5 models. Here we review and synthesize the latest developments in ECS and TCR values in CMIP, compile possible reasons for the current values as supplied by the modeling groups, and highlight future directions. Cloud feedbacks and cloud-aerosol interactions are the most likely contributors to the high values and increased range of ECS in CMIP6.

References

  1. Science. 2011 Dec 9;334(6061):1385-8 [PMID: 22116027]
  2. Science. 1985 Aug 30;229(4716):857-9 [PMID: 17777925]
  3. J Adv Model Earth Syst. 2019 Jun;11(6):1735-1758 [PMID: 31598189]
  4. J Adv Model Earth Syst. 2019 Apr;11(4):998-1038 [PMID: 32742553]
  5. Philos Trans A Math Phys Eng Sci. 2015 Nov 13;373(2054): [PMID: 26438287]
  6. Sci Adv. 2020 Mar 18;6(12):eaaz9549 [PMID: 32206725]
  7. Nature. 2012 Nov 29;491(7426):683-91 [PMID: 23192145]
  8. Science. 1989 Aug 4;245(4917):513-6 [PMID: 17750262]
  9. Sci Adv. 2016 Nov 09;2(11):e1501923 [PMID: 28861462]

Word Cloud

Created with Highcharts 10.0.0modelsCMIP6climaterangeequilibriumECSCO1valuescurrentgenerationsystemsensitivitywarmingdoublingtransientresponseTCRearthparticipatingCoupledModelIntercomparisonProjectPhase6hypotheticalvalueglobal8��C56��Clargestdating1990sMeanwhilesurfacetemperaturearoundtime1%peryearincreasesimulation7��C3��C30��CslightlylargerCMIP3CMIP5reviewsynthesizelatestdevelopmentsCMIPcompilepossiblereasonssuppliedmodelinggroupshighlightfuturedirectionsCloudfeedbackscloud-aerosolinteractionslikelycontributorshighincreasedContextinterpretingEarth

Similar Articles

Cited By