Magnetite Nanoparticles Functionalized with RNases against Intracellular Infection of .

Nathaly Rangel-Muñoz, Alejandra Suarez-Arnedo, Raúl Anguita, Guillem Prats-Ejarque, Johann F Osma, Carolina Muñoz-Camargo, Ester Boix, Juan C Cruz, Vivian A Salazar
Author Information
  1. Nathaly Rangel-Muñoz: Department of Biomedical Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogotá 111711, Colombia.
  2. Alejandra Suarez-Arnedo: Department of Biomedical Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogotá 111711, Colombia. ORCID
  3. Raúl Anguita: Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.
  4. Guillem Prats-Ejarque: Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.
  5. Johann F Osma: Department of Electrical and Electronics Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogotá 111711, Colombia. ORCID
  6. Carolina Muñoz-Camargo: Department of Biomedical Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogotá 111711, Colombia. ORCID
  7. Ester Boix: Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain. ORCID
  8. Juan C Cruz: Department of Biomedical Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogotá 111711, Colombia. ORCID
  9. Vivian A Salazar: Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.

Abstract

Current treatments against bacterial infections have severe limitations, mainly due to the emergence of resistance to conventional antibiotics. In the specific case of strains, they have shown a number of resistance mechanisms to counter most antibiotics. Human secretory RNases from the RNase A superfamily are proteins involved in a wide variety of biological functions, including antimicrobial activity. The objective of this work was to explore the intracellular antimicrobial action of an RNase 3/1 hybrid protein that combines RNase 1 high catalytic and RNase 3 bactericidal activities. To achieve this, we immobilized the RNase 3/1 hybrid on Polyetheramine (PEA)-modified magnetite nanoparticles (MNPs). The obtained nanobioconjugates were tested in macrophage-derived THP-1 cells infected with PAO1. The obtained results show high antimicrobial activity of the functionalized hybrid protein (MNP-RNase 3/1) against the intracellular growth of of the functionalized hybrid protein. Moreover, the immobilization of RNase 3/1 enhances its antimicrobial and cell-penetrating activities without generating any significant cell damage. Considering the observed antibacterial activity, the immobilization of the RNase A superfamily and derived proteins represents an innovative approach for the development of new strategies using nanoparticles to deliver antimicrobials that counteract intracellular infection.

Keywords

References

  1. Nat Biotechnol. 1999 Mar;17(3):265-70 [PMID: 10096294]
  2. Sci Rep. 2015 Oct 06;5:14813 [PMID: 26437582]
  3. J Control Release. 2017 Oct 10;263:39-45 [PMID: 28153764]
  4. FEBS J. 2010 Apr;277(7):1713-25 [PMID: 20180804]
  5. Innate Immun. 2013 Feb;19(1):86-97 [PMID: 22627784]
  6. Biomater Sci. 2017 Mar 28;5(4):772-783 [PMID: 28256646]
  7. Front Immunol. 2018 May 16;9:1012 [PMID: 29867984]
  8. Sci Rep. 2018 Feb 1;8(1):2082 [PMID: 29391477]
  9. ACS Chem Biol. 2013 Jan 18;8(1):144-51 [PMID: 23025322]
  10. Biochem J. 2013 Nov 15;456(1):99-108 [PMID: 23962023]
  11. PLoS One. 2013 Apr 22;8(4):e60989 [PMID: 23630577]
  12. FEBS Lett. 2003 Apr 10;540(1-3):15-20 [PMID: 12681476]
  13. Nanoscale Res Lett. 2018 Oct 25;13(1):339 [PMID: 30361809]
  14. Biotechnol Rep (Amst). 2016 Sep 20;12:13-25 [PMID: 28352550]
  15. Crit Rev Biotechnol. 2019 Mar;39(2):202-219 [PMID: 30394121]
  16. Int J Mol Sci. 2019 Sep 14;20(18): [PMID: 31540052]
  17. Eur J Med Chem. 2018 May 25;152:590-599 [PMID: 29763807]
  18. Nanomedicine. 2016 Nov;12(8):2215-2240 [PMID: 27339783]
  19. Data Brief. 2018 Sep 11;21:2518-2521 [PMID: 30761332]
  20. J Cell Biochem. 2002;86(3):540-52 [PMID: 12210760]
  21. Adv Drug Deliv Rev. 2016 Nov 15;106(Pt B):242-255 [PMID: 27117710]
  22. Biotechnol Prog. 2001 May-Jun;17(3):447-52 [PMID: 11386864]
  23. Infect Immun. 2015 Oct 14;84(1):56-66 [PMID: 26467446]
  24. Front Microbiol. 2018 May 08;9:855 [PMID: 29867793]
  25. Antimicrob Agents Chemother. 2016 Sep 23;60(10):6313-25 [PMID: 27527084]
  26. J Mater Chem B. 2016 Jan 14;4(2):212-219 [PMID: 32263363]
  27. Methods Enzymol. 2012;502:273-90 [PMID: 22208989]
  28. Pharm Dev Technol. 2018 Apr;23(4):316-323 [PMID: 28565928]
  29. Biomater Sci. 2017 Mar 28;5(4):817-827 [PMID: 28275774]
  30. ACS Appl Mater Interfaces. 2019 Mar 27;11(12):11112-11118 [PMID: 30874429]
  31. Br J Pharmacol. 2005 Nov;146(6):882-93 [PMID: 16158070]
  32. Biosens Bioelectron. 2017 Jun 15;92:502-508 [PMID: 27825885]
  33. Int J Mol Sci. 2016 Aug 05;17(8): [PMID: 27527162]
  34. Int J Nanomedicine. 2019 Oct 24;14:8483-8497 [PMID: 31695376]
  35. Front Immunol. 2019 Jul 02;10:1500 [PMID: 31312205]
  36. FEBS Lett. 2010 Jun 3;584(11):2194-200 [PMID: 20388512]
  37. Drug Deliv. 2020 Dec;27(1):864-875 [PMID: 32515999]
  38. Nucleic Acids Res. 2003 Jan 15;31(2):602-7 [PMID: 12527768]
  39. J Mol Recognit. 2011 Jan-Feb;24(1):90-100 [PMID: 20213669]
  40. Expert Opin Biol Ther. 2017 Jun;17(6):663-676 [PMID: 28368216]
  41. mBio. 2018 May 1;9(3): [PMID: 29717012]
  42. Curr Opin Pulm Med. 2013 May;19(3):216-28 [PMID: 23524477]
  43. Biotechnol Adv. 2019 Jan - Feb;37(1):177-192 [PMID: 30500353]
  44. Biochemistry. 2011 Oct 4;50(39):8374-82 [PMID: 21827164]
  45. FEBS J. 2009 Nov;276(22):6497-508 [PMID: 19817855]
  46. Vaccines (Basel). 2018 Nov 20;6(4): [PMID: 30463297]
  47. Chem Soc Rev. 2018 May 21;47(10):3421-3432 [PMID: 29537040]
  48. Nano Today. 2015 Aug;10(4):487-510 [PMID: 26640510]
  49. Methods Enzymol. 2016;571:135-50 [PMID: 27112398]
  50. J Control Release. 2020 Apr 10;320:45-62 [PMID: 31923537]
  51. Biochemistry. 2003 Sep 2;42(34):10182-90 [PMID: 12939146]
  52. Br J Pharmacol. 2017 Jul;174(14):2225-2236 [PMID: 27925153]
  53. Antimicrob Agents Chemother. 2013 May;57(5):2310-8 [PMID: 23478951]
  54. Pharm Res. 2018 Jun 29;35(9):170 [PMID: 29959603]
  55. Prog Nucleic Acid Res Mol Biol. 2005;80:349-74 [PMID: 16164979]
  56. Nat Protoc. 2015 Mar;10(3):382-96 [PMID: 25654756]
  57. Genes (Basel). 2017 Jan 18;8(1): [PMID: 28106797]
  58. Antimicrob Agents Chemother. 2016 Jan 04;60(3):1767-78 [PMID: 26729493]
  59. Microb Cell. 2015 Aug 13;2(9):353-355 [PMID: 28357311]
  60. Biochem Biophys Res Commun. 2002 Mar 8;291(4):844-54 [PMID: 11866442]
  61. J Invest Dermatol. 2015 Feb;135(2):612-615 [PMID: 25178106]
  62. Pathog Glob Health. 2015;109(7):309-18 [PMID: 26343252]
  63. Proc Natl Acad Sci U S A. 1998 Sep 1;95(18):10407-12 [PMID: 9724716]
  64. PLoS Pathog. 2019 Jun 20;15(6):e1007812 [PMID: 31220187]
  65. J Immunol. 2017 Oct 1;199(7):2483-2490 [PMID: 28814602]
  66. Nanomedicine (Lond). 2012 Jan;7(1):133-43 [PMID: 22191782]
  67. Biol Pharm Bull. 2013;36(9):1435-9 [PMID: 23995654]
  68. Front Cell Infect Microbiol. 2019 Apr 02;9:84 [PMID: 31001488]
  69. Sci Rep. 2017 Jul 4;7(1):4610 [PMID: 28676673]
  70. Front Microbiol. 2019 Jun 19;10:1357 [PMID: 31275278]
  71. J Microbiol Methods. 2016 Nov;130:169-176 [PMID: 27582280]
  72. Front Cell Infect Microbiol. 2017 Feb 15;7:39 [PMID: 28261568]
  73. ACS Biomater Sci Eng. 2020 Jan 13;6(1):415-424 [PMID: 33463215]
  74. Int J Nanomedicine. 2018 Nov 28;13:8087-8094 [PMID: 30568447]
  75. Int J Biol Macromol. 2018 Jul 1;113:354-360 [PMID: 29486263]
  76. Methods Mol Biol. 2014;1149:741-55 [PMID: 24818947]
  77. Molecules. 2014 Aug 04;19(8):11465-86 [PMID: 25093986]
  78. Int J Nanomedicine. 2019 Dec 19;14:9971-9981 [PMID: 31908453]
  79. Front Immunol. 2018 Jul 23;9:1675 [PMID: 30083156]
  80. Curr Eye Res. 2005 Jul;30(7):505-15 [PMID: 16020284]
  81. Microbiologyopen. 2016 Oct;5(5):830-845 [PMID: 27277554]
  82. Biochem Pharmacol. 2017 Jun 1;133:117-138 [PMID: 27663838]

Grants

  1. 689-2018/Departamento Administrativo de Ciencia, Tecnología e Innovación (COLCIENCIAS)
  2. 811-2019/Departamento Administrativo de Ciencia, Tecnología e Innovación (COLCIENCIAS)
  3. Fondo de Apoyo a Profesores Asistentes grant to Carolina Muñoz-Camargo/Universidad de los Andes
  4. 20180310/Fundació la Marató de TV3

Word Cloud

Created with Highcharts 10.0.0RNaseantimicrobial3/1hybridactivityintracellularproteinnanoparticlesresistanceantibioticsRNasessuperfamilyproteinshighactivitiesmagnetiteobtainedfunctionalizedimmobilizationantimicrobialsCurrenttreatmentsbacterialinfectionsseverelimitationsmainlydueemergenceconventionalspecificcasestrainsshownnumbermechanismscounterHumansecretoryinvolvedwidevarietybiologicalfunctionsincludingobjectiveworkexploreactioncombines1catalytic3bactericidalachieveimmobilizedPolyetheraminePEA-modifiedMNPsnanobioconjugatestestedmacrophage-derivedTHP-1cellsinfectedPAO1resultsshowMNP-RNasegrowthMoreoverenhancescell-penetratingwithoutgeneratingsignificantcelldamageConsideringobservedantibacterialderivedrepresentsinnovativeapproachdevelopmentnewstrategiesusingdelivercounteractinfectionMagnetiteNanoparticlesFunctionalizedIntracellularInfectionPseudomonasaeruginosaribonucleases

Similar Articles

Cited By