Many adult connective tissues undergo continuous remodeling to maintain matrix homeostasis. Physiological remodeling involves the degradation of collagen fibers by the intracellular cathepsin-dependent phagocytic pathway. We considered that a multidomain, small GTPase activating protein, IQGAP1, which is involved in the generation of cell extensions, is required for collagen phagocytosis, possibly arising from its interactions with cdc42 and the actin-binding proteinFlightless I (FliI). We examined the role of IQGAP1 in collagen phagocytosis by human gingival fibroblasts (HGFs) and by IQGAP1+/+ and IQGAP1-/- mouse embryonic fibroblasts. IQGAP1 was strongly expressed by HGFs, localized to vinculin-stained cell adhesions and sites where cell extensions are initiated, and colocalized with FliI. Immunoprecipitation showed that IQGAP1 associated with FliI. HGFs showed 10-fold increases of collagen binding, 6-fold higher internalization, and 3-fold higher β1 integrin activation between 30 and 180 min after incubation with collagen. Compared with IQGAP1+/+ fibroblasts, deletion of IQGAP1 reduced collagen binding (1.4-fold), collagen internalization (3-fold), β1 integrin activation (2-fold), and collagen degradation (1.8-fold). We conclude that IQGAP1 affects collagen remodeling through its regulation of phagocytic degradation pathways, which may involve the interaction of IQGAP1 with FliI.
Arora, P. D., Conti, M. A., Ravid, S., Sacks, D. B., Kapus, A., Adelstein, R. S., … McCulloch, C. A. (2008). Rap1 activation in collagen phagocytosis is dependent on nonmuscle myosin II-A. Molecular Biology of the Cell, 19(12), 5032-5046. https://doi.org/10.1091/mbc.E08-04-0430
Arora, P. D., Di Gregorio, M., He, P., & McCulloch, C. A. (2017). TRPV4 mediates the Ca(2+) influx required for the interaction between flightless-1 and non-muscle myosin, and collagen remodeling. Journal of Cell Science, 130(13), 2196-2208. https://doi.org/10.1242/jcs.201665
Arora, P. D., Fan, L., Sodek, J., Kapus, A., & McCulloch, C. A. (2003). Differential binding to dorsal and ventral cell surfaces of fibroblasts: Effect on collagen phagocytosis. Experimental Cell Research, 286(2), 366-380. https://doi.org/10.1016/s0014-4827(03)00096-x
Arora, P. D., Manolson, M. F., Downey, G. P., Sodek, J., & McCulloch, C. A. (2000). A novel model system for characterization of phagosomal maturation, acidification, and intracellular collagen degradation in fibroblasts. Journal of Biological Chemistry, 275(45), 35432-35441. https://doi.org/10.1074/jbc.M003221200
Arora, P. D., Nakajima, K., Nanda, A., Plaha, A., Wilde, A., Sacks, D. B., & McCulloch, C. A. (2020). Flightless anchors IQGAP1 and R-ras to mediate cell extension formation and matrix remodeling. FASEB Journal. Under review.
Arora, P. D., Wang, Y., Bresnick, A., Janmey, P. A., & McCulloch, C. A. (2015). Flightless I interacts with NMMIIA to promote cell extension formation, which enables collagen remodeling. Molecular Biology of the Cell, 26(12), 2279-2297. https://doi.org/10.1091/mbc.E14-11-1536
Briggs, M. W., & Sacks, D. B. (2003). IQGAP1 as signal integrator: Ca2+, calmodulin, Cdc42 and the cytoskeleton. FEBS Letters, 542(1-3), 7-11. https://doi.org/10.1016/s0014-5793(03)00333-8
Brown, M. D., & Sacks, D. B. (2006). IQGAP1 in cellular signaling: Bridging the GAP. Trends in Cell Biology, 16(5), 242-249. https://doi.org/10.1016/j.tcb.2006.03.002
Dimchev, G., Steffen, A., Kage, F., Dimchev, V., Pernier, J., Carlier, M. F., & Rottner, K. (2017). Efficiency of lamellipodia protrusion is determined by the extent of cytosolic actin assembly. Molecular Biology of the Cell, 28(10), 1311-1325. https://doi.org/10.1091/mbc.E16-05-0334
Everts, V., van der Zee, E., Creemers, L., & Beertsen, W. (1996). Phagocytosis and intracellular digestion of collagen, its role in turnover and remodelling. Histochemical Journal, 28(4), 229-245.
Fukata, M., Kuroda, S., Fujii, K., Nakamura, T., Shoji, I., Matsuura, Y., … Kaibuchi, K. (1997). Regulation of cross-linking of actin filament by IQGAP1, a target for Cdc42. Journal of Biological Chemistry, 272(47), 29579-29583. https://doi.org/10.1074/jbc.272.47.29579
Glogauer, M., Arora, P., Chou, D., Janmey, P. A., Downey, G. P., & McCulloch, C. A. (1998). The role of actin-binding protein 280 in integrin-dependent mechanoprotection. Journal of Biological Chemistry, 273(3), 1689-1698. https://doi.org/10.1074/jbc.273.3.1689
Houde, M., Bertholet, S., Gagnon, E., Brunet, S., Goyette, G., Laplante, A., … Desjardins, M. (2003). Phagosomes are competent organelles for antigen cross-presentation. Nature, 425(6956), 402-406. https://doi.org/10.1038/nature01912
Humphries, J. D., Schofield, N. R., Mostafavi-Pour, Z., Green, L. J., Garratt, A. N., Mould, A. P., & Humphries, M. J. (2005). Dual functionality of the anti-beta1 integrin antibody, 12G10, exemplifies agonistic signalling from the ligand binding pocket of integrin adhesion receptors. Journal of Biological Chemistry, 280(11), 10234-10243. https://doi.org/10.1074/jbc.M411102200
Keely, P. J., Rusyn, E. V., Cox, A. D., & Parise, L. V. (1999). R-Ras signals through specific integrin alpha cytoplasmic domains to promote migration and invasion of breast epithelial cells. Journal of Cell Biology, 145(5), 1077-1088. https://doi.org/10.1083/jcb.145.5.1077
Kiema, T., Lad, Y., Jiang, P., Oxley, C. L., Baldassarre, M., Wegener, K. L., … Calderwood, D. A. (2006). The molecular basis of filamin binding to integrins and competition with talin. Molecular Cell, 21(3), 337-347. https://doi.org/10.1016/j.molcel.2006.01.011
Kim, S. H., Li, Z., & Sacks, D. B. (2000). E-cadherin-mediated cell-cell attachment activates Cdc42. Journal of Biological Chemistry, 275(47), 36999-37005. https://doi.org/10.1074/jbc.M003430200
Kwiatkowski, D. J., Janmey, P. A., & Yin, H. L. (1989). Identification of critical functional and regulatory domains in gelsolin. Journal of Cell Biology, 108(5), 1717-1726. https://doi.org/10.1083/jcb.108.5.1717
Kwong, L., Wozniak, M. A., Collins, A. S., Wilson, S. D., & Keely, P. J. (2003). R-Ras promotes focal adhesion formation through focal adhesion kinase and p130(Cas) by a novel mechanism that differs from integrins. Molecular and Cellular Biology, 23(3), 933-949.
Lee, H., Overall, C. M., McCulloch, C. A., & Sodek, J. (2006). A critical role for the membrane-type 1 matrix metalloproteinase in collagen phagocytosis. Molecular Biology of the Cell, 17(11), 4812-4826. https://doi.org/10.1091/mbc.E06-06-0486
Lee, W., Sodek, J., & McCulloch, C. A. (1996). Role of integrins in regulation of collagen phagocytosis by human fibroblasts. Journal of Cellular Physiology, 168(3), 695-704. https://doi.org/10.1002/(SICI)1097-4652(199609)168:3<695::AID-JCP22>3.0.CO;2-X
Lenter, M., Uhlig, H., Hamann, A., Jeno, P., Imhof, B., & Vestweber, D. (1993). A monoclonal antibody against an activation epitope on mouse integrin chain beta 1 blocks adhesion of lymphocytes to the endothelial integrin alpha 6 beta 1. Proceedings of the National Academy of Sciences of the United States of America, 90(19), 9051-9055. https://doi.org/10.1073/pnas.90.19.9051
Makela, M., Salo, T., Uitto, V. J., & Larjava, H. (1994). Matrix metalloproteinases (MMP-2 and MMP-9) of the oral cavity: Cellular origin and relationship to periodontal status. Journal of Dental Research, 73(8), 1397-1406. https://doi.org/10.1177/00220345940730080201
Melcher, A. H., & Chan, J. (1981). Phagocytosis and digestion of collagen by gingival fibroblasts in vivo: A study of serial sections. Journal of Ultrastructure Research, 77(1), 1-36.
Mohammad, I., Arora, P. D., Naghibzadeh, Y., Wang, Y., Li, J., Mascarenhas, W., … McCulloch, C. A. (2012). Flightless I is a focal adhesion-associated actin-capping protein that regulates cell migration. FASEB Journal, 26(8), 3260-3272. https://doi.org/10.1096/fj.11-202051
Narayanan, A. S., Engel, L. D., & Page, R. C. (1983). The effect of chronic inflammation on the composition of collagen types in human connective tissue. Collagen and Related Research, 3(4), 323-334. https://doi.org/10.1016/s0174-173x(83)80014-4
Narayanan, A. S., Meyers, D. F., & Page, R. C. (1988). Regulation of collagen production in fibroblasts cultured from normal and phenytoin-induced hyperplastic human gingiva. Journal of Periodontal Research, 23(2), 118-121. https://doi.org/10.1111/j.1600-0765.1988.tb01343.x
Narayanan, A. S., & Page, R. C. (1976). Biochemical characterization of collagens synthesized by fibroblasts derived from normal and diseased human gingiva. Journal of Biological Chemistry, 251(18), 5464-5471.
Panwar, P., Du, X., Sharma, V., Lamour, G., Castro, M., Li, H., & Bromme, D. (2013). Effects of cysteine proteases on the structural and mechanical properties of collagen fibers. Journal of Biological Chemistry, 288(8), 5940-5950. https://doi.org/10.1074/jbc.M112.419689
Perez-Tamayo, R. (1978). Pathology of collagen degradation. A review. American Journal of Pathology, 92(2), 508-566.
Ren, J. G., Li, Z., & Sacks, D. B. (2008). IQGAP1 integrates Ca2+/calmodulin and B-Raf signaling. Journal of Biological Chemistry, 283(34), 22972-22982. https://doi.org/10.1074/jbc.M804626200
Schincaglia, G. P., Forniti, F., Cavallini, R., Piva, R., Calura, G., & del Senno, L. (1992). Cyclosporin-A increases type I procollagen production and mRNA level in human gingival fibroblasts in vitro. Journal of Oral Pathology & Medicine, 21(4), 181-185. https://doi.org/10.1111/j.1600-0714.1992.tb00098.x
Smith, P. C., Martinez, C., Martinez, J., & McCulloch, C. A. (2019). Role of fibroblast populations in periodontal wound healing and tissue remodeling. Frontiers in Physiology, 10, 270. https://doi.org/10.3389/fphys.2019.00270
Sodek, J. (1977). A comparison of the rates of synthesis and turnover of collagen and non-collagen proteins in adult rat periodontal tissues and skin using a microassay. Archives of Oral Biology, 22(12), 655-665. https://doi.org/10.1016/0003-9969(77)90095-4
Swart-Mataraza, J. M., Li, Z., & Sacks, D. B. (2002). IQGAP1 is a component of Cdc42 signaling to the cytoskeleton. Journal of Biological Chemistry, 277(27), 24753-24763. https://doi.org/10.1074/jbc.M111165200
Yin, H. L. (1987). Gelsolin: Calcium- and polyphosphoinositide-regulated actin-modulating protein. BioEssays, 7(4), 176-179. https://doi.org/10.1002/bies.950070409