Efficacy of phage cocktail AB-SA01 therapy in diabetic mouse wound infections caused by multidrug-resistant Staphylococcus aureus.

Legesse Garedew Kifelew, Morgyn S Warner, Sandra Morales, Lewis Vaughan, Richard Woodman, Robert Fitridge, James G Mitchell, Peter Speck
Author Information
  1. Legesse Garedew Kifelew: College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia. legesse.kifelew@flinders.edu.au. ORCID
  2. Morgyn S Warner: Infectious Diseases Unit, The Queen Elizabeth Hospital, Woodville, South Australia, Australia.
  3. Sandra Morales: AmpliPhi Biosciences Corporation, Sydney, New South Wales, Australia.
  4. Lewis Vaughan: Research Development and Support, Flinders University, Adelaide, South Australia, Australia.
  5. Richard Woodman: College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia.
  6. Robert Fitridge: Discipline of Surgery, The University of Adelaide, Adelaide, South Australia, Australia.
  7. James G Mitchell: College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia.
  8. Peter Speck: College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia.

Abstract

BACKGROUND: diabetic foot ulcer (DFU) is a serious complication of diabetes mellitus. Antibiotic-resistant Staphylococcus aureus is frequently isolated from DFU infections. Bacteriophages (phages) represent an alternative or adjunct treatment to antibiotic therapy. Here we describe the efficacy of AB-SA01, a cocktail of three S. aureus Myoviridae phages, made to current good manufacturing practice (cGMP) standards, and which has undergone two phase I clinical trials, in treatment of multidrug-resistant (MDR) S. aureus infections.
RESULTS: Wounds of saline-treated mice showed no healing, but expanded and became inflamed, ulcerated, and suppurating. In contrast, AB-SA01 treatment decreased the bacterial load with efficacy similar or superior to vancomycin treatment. At the end of the treatment period, there was a significant decrease (p < 0.001) in bacterial load and wound size in infected phage- and vancomycin-treated groups compared with infected saline-treated mice. In phage-treated mice, wound healing was seen similar to vancomycin treatment. No mortality was recorded associated with infections, and post-mortem examinations did not show any evident pathological lesions other than the skin wounds. No adverse effects related to the application of phages were observed.
CONCLUSION: Topical application of phage cocktail AB-SA01 is effective, as shown by bacterial load reduction and wound closure, in the treatment of diabetic wound infections caused by MDR S. aureus. Our results suggest that topical phage cocktail treatment may be effective in treating antibiotic-resistant S. aureus DFU infections.

Keywords

References

  1. J Am Coll Clin Wound Spec. 2015 Feb 27;5(3):52-7 [PMID: 26199893]
  2. PLoS One. 2015 Jan 29;10(1):e0117556 [PMID: 25633992]
  3. Clin Infect Dis. 2004 Oct 1;39(7):885-910 [PMID: 15472838]
  4. Diabetes. 2015 Aug;64(8):2991-5 [PMID: 25901094]
  5. PLoS One. 2016 Aug 24;11(8):e0161658 [PMID: 27556897]
  6. J Vis Exp. 2013 May 28;(75):e50265 [PMID: 23748713]
  7. Biol Pharm Bull. 2006 Jun;29(6):1110-9 [PMID: 16755002]
  8. PLoS One. 2013;8(2):e56022 [PMID: 23418497]
  9. J Wound Care. 2009 Jun;18(6):237-8, 240-3 [PMID: 19661847]
  10. PLoS One. 2012;7(3):e31698 [PMID: 22396736]
  11. Trends Microbiol. 2009 Feb;17(2):66-72 [PMID: 19162482]
  12. Antimicrob Agents Chemother. 2007 Aug;51(8):2765-73 [PMID: 17517843]
  13. Proc Natl Acad Sci U S A. 2006 Jun 13;103(24):9232-7 [PMID: 16754860]
  14. N Engl J Med. 2017 Jun 15;376(24):2367-2375 [PMID: 28614678]
  15. Antimicrob Agents Chemother. 2010 Jan;54(1):397-404 [PMID: 19822702]
  16. Environ Toxicol Pharmacol. 2001 Jan 1;9(3):71-78 [PMID: 11167151]
  17. Clin Infect Dis. 2007 Sep 15;45 Suppl 3:S191-5 [PMID: 17712746]
  18. J Am Podiatr Med Assoc. 2008 Nov-Dec;98(6):489-93 [PMID: 19017860]
  19. Diabet Med. 2019 Aug;36(8):995-1002 [PMID: 31004370]
  20. Bacteriophage. 2012 Apr 1;2(2):130-133 [PMID: 23050223]
  21. FEMS Microbiol Lett. 2016 Feb;363(3): [PMID: 26691737]
  22. Virulence. 2014 Jan 1;5(1):226-35 [PMID: 23973944]
  23. Comp Med. 2007 Dec;57(6):563-9 [PMID: 18246868]
  24. Diabetes Res Clin Pract. 2015 Nov;110(2):147-57 [PMID: 26453263]
  25. Clin Infect Dis. 2007 Feb 15;44(4):562-5 [PMID: 17243061]
  26. Artif Organs. 2017 Apr;41(4):319-326 [PMID: 28326562]
  27. PLoS One. 2014 Aug 14;9(8):e104447 [PMID: 25121729]
  28. Sci Rep. 2017 Aug 14;7(1):8004 [PMID: 28808331]
  29. Pharm Res. 2011 Apr;28(4):934-7 [PMID: 21063753]
  30. Front Cell Infect Microbiol. 2017 Feb 24;7:49 [PMID: 28286740]
  31. Appl Environ Microbiol. 2014 Nov;80(21):6694-703 [PMID: 25149517]
  32. PLoS Biol. 2010 Jun 29;8(6):e1000412 [PMID: 20613859]
  33. Plast Reconstr Surg. 2013 Feb;131(2):225-34 [PMID: 23357984]
  34. J Bacteriol. 2016 Nov 4;198(23):3127 [PMID: 27815539]
  35. Nat Microbiol. 2020 Mar;5(3):465-472 [PMID: 32066959]
  36. Int J Infect Dis. 2015 Nov;40:81-91 [PMID: 26460089]
  37. Viruses. 2019 Jan 21;11(1): [PMID: 30669652]
  38. Antimicrob Agents Chemother. 2008 Dec;52(12):4344-50 [PMID: 18838590]
  39. Clin Pharmacol Ther. 2000 Sep;68(3):225-30 [PMID: 11014403]
  40. Antimicrob Agents Chemother. 2007 Jun;51(6):1934-8 [PMID: 17387151]
  41. Science. 2019 Mar 29;363(6434): [PMID: 30923196]
  42. World J Diabetes. 2011 Feb 15;2(2):24-32 [PMID: 21537457]
  43. Cell Host Microbe. 2019 Oct 9;26(4):527-541.e5 [PMID: 31600503]
  44. J Vis Exp. 2011 Aug 07;(54): [PMID: 21847084]
  45. Microbiol Rev. 1992 Sep;56(3):430-81 [PMID: 1406491]
  46. Nat Rev Microbiol. 2012 Sep;10(9):607-17 [PMID: 22864264]
  47. Future Microbiol. 2013 Jun;8(6):769-83 [PMID: 23701332]
  48. Comp Med. 2012 Oct;62(5):381-90 [PMID: 23114041]
  49. Clin Infect Dis. 2009 Nov 15;49(10):1541-9 [PMID: 19842981]
  50. Diabetes Care. 2014;37(3):651-8 [PMID: 24186882]
  51. Virology. 2012 Dec 20;434(2):138-42 [PMID: 23059181]
  52. Nat Microbiol. 2019 Oct;4(10):1727-1736 [PMID: 31285584]
  53. Bacteriophage. 2013 Apr 1;3(2):e25518 [PMID: 24228223]
  54. J Hosp Med. 2017 Dec;12(12):994-1000 [PMID: 29236099]
  55. Lab Anim. 2011 Jul;45(3):131-40 [PMID: 21478271]

MeSH Term

Animals
Bacterial Load
Diabetes Mellitus, Experimental
Diabetic Foot
Disease Models, Animal
Drug Resistance, Multiple, Bacterial
Male
Mice
Phage Therapy
Staphylococcal Infections
Staphylococcus aureus
Vancomycin
Wound Healing
Wound Infection

Chemicals

Vancomycin

Word Cloud

Created with Highcharts 10.0.0treatmentaureusinfectionscocktailSwoundAB-SA01miceDFUphagesMDRbacterialloadphageDiabeticStaphylococcustherapyefficacymultidrug-resistantsaline-treatedhealingsimilarvancomycininfectedapplicationeffectivediabeticcausedBACKGROUND:footulcerseriouscomplicationdiabetesmellitusAntibiotic-resistantfrequentlyisolatedBacteriophagesrepresentalternativeadjunctantibioticdescribethreeMyoviridaemadecurrentgoodmanufacturingpracticecGMPstandardsundergonetwophaseclinicaltrialsRESULTS:Woundsshowedexpandedbecameinflamedulceratedsuppuratingcontrastdecreasedsuperiorendperiodsignificantdecreasep < 0001sizephage-vancomycin-treatedgroupscomparedphage-treatedseenmortalityrecordedassociatedpost-mortemexaminationsshowevidentpathologicallesionsskinwoundsadverseeffectsrelatedobservedCONCLUSION:Topicalshownreductionclosureresultssuggesttopicalmaytreatingantibiotic-resistantEfficacymouseInfectionPhageTreatmentWound

Similar Articles

Cited By