Big data requirements for artificial intelligence.

Sophia Y Wang, Suzann Pershing, Aaron Y Lee, AAO Taskforce on AI and AAO Medical Information Technology Committee
Author Information
  1. Sophia Y Wang: Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, California.
  2. Suzann Pershing: Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, California.
  3. Aaron Y Lee: Department of Ophthalmology, University of Washington, Seattle, Washington, USA.

Abstract

PURPOSE OF REVIEW: To summarize how big data and artificial intelligence technologies have evolved, their current state, and next steps to enable future generations of artificial intelligence for ophthalmology.
RECENT FINDINGS: Big data in health care is ever increasing in volume and variety, enabled by the widespread adoption of electronic health records (EHRs) and standards for health data information exchange, such as Digital Imaging and Communications in Medicine and Fast Healthcare Interoperability Resources. Simultaneously, the development of powerful cloud-based storage and computing architectures supports a fertile environment for big data and artificial intelligence in health care. The high volume and velocity of imaging and structured data in ophthalmology and is one of the reasons why ophthalmology is at the forefront of artificial intelligence research. Still needed are consensus labeling conventions for performing supervised learning on big data, promotion of data sharing and reuse, standards for sharing artificial intelligence model architectures, and access to artificial intelligence models through open application program interfaces (APIs).
SUMMARY: Future requirements for big data and artificial intelligence include fostering reproducible science, continuing open innovation, and supporting the clinical use of artificial intelligence by promoting standards for data labels, data sharing, artificial intelligence model architecture sharing, and accessible code and APIs.

References

  1. JAMA Netw Open. 2019 Feb 1;2(2):e188029 [PMID: 30735236]
  2. Epidemiology. 2015 May;26(3):390-4 [PMID: 25756221]
  3. Am J Ophthalmol. 2009 Dec;148(6):820-2 [PMID: 19932803]
  4. Sci Rep. 2019 Apr 5;9(1):5694 [PMID: 30952891]
  5. PLoS One. 2019 Apr 5;14(4):e0214875 [PMID: 30951547]
  6. Radiology. 2020 Jun;295(3):675-682 [PMID: 32208097]
  7. Am J Ophthalmol. 2020 Jun;214:134-142 [PMID: 32171769]
  8. Ophthalmology. 2012 Nov;119(11):2282-9 [PMID: 22840421]
  9. Health Aff (Millwood). 2017 Aug 1;36(8):1416-1422 [PMID: 28784734]
  10. Science. 2019 Oct 25;366(6464):447-453 [PMID: 31649194]
  11. NPJ Digit Med. 2018 May 8;1:18 [PMID: 31304302]
  12. Ophthalmology. 2019 Apr;126(4):513-521 [PMID: 30578810]
  13. Am J Public Health. 2016 Sep;106(9):1684-9 [PMID: 27459452]
  14. Ophthalmology. 1995 Oct;102(10):1450-60 [PMID: 9097791]
  15. Clin Exp Ophthalmol. 2019 Nov;47(8):1009-1018 [PMID: 31215760]
  16. JAMA. 2020 Jan 28;323(4):305-306 [PMID: 31904799]
  17. Ophthalmology. 2019 May;126(5):655-662 [PMID: 30572076]
  18. Ophthalmology. 2014 May;121(5):1134-41 [PMID: 24433971]
  19. Invest Ophthalmol Vis Sci. 2014 Sep 23;55(10):6996-7005 [PMID: 25249602]
  20. Int J Card Imaging. 1995;11 Suppl 3:171-7 [PMID: 7594746]
  21. Sci Data. 2016 Mar 15;3:160018 [PMID: 26978244]
  22. Ophthalmology. 1991 May;98(5 Suppl):823-33 [PMID: 2062515]
  23. Am J Ophthalmol. 2019 May;201:9-18 [PMID: 30689990]
  24. Curr Opin Ophthalmol. 2020 Mar;31(2):85-90 [PMID: 31922980]
  25. EGEMS (Wash DC). 2019 Mar 29;7(1):6 [PMID: 30972355]
  26. Sci Rep. 2019 Jun 10;9(1):8385 [PMID: 31182763]
  27. Control Clin Trials. 1999 Dec;20(6):573-600 [PMID: 10588299]
  28. Nat Med. 2019 Jan;25(1):44-56 [PMID: 30617339]
  29. N Engl J Med. 2009 Mar 26;360(13):1278-81 [PMID: 19321867]

Grants

  1. K23 EY029246/NEI NIH HHS
  2. P30 EY010572/NEI NIH HHS
  3. T15 LM007033/NLM NIH HHS

MeSH Term

Artificial Intelligence
Big Data
Electronic Health Records
Humans
Ophthalmology

Word Cloud

Created with Highcharts 10.0.0dataartificialintelligencebighealthsharingophthalmologystandardsBigcarevolumearchitecturesmodelopenAPIsrequirementsPURPOSEOFREVIEW:summarizetechnologiesevolvedcurrentstatenextstepsenablefuturegenerationsRECENTFINDINGS:everincreasingvarietyenabledwidespreadadoptionelectronicrecordsEHRsinformationexchangeDigitalImagingCommunicationsMedicineFastHealthcareInteroperabilityResourcesSimultaneouslydevelopmentpowerfulcloud-basedstoragecomputingsupportsfertileenvironmenthighvelocityimagingstructuredonereasonsforefrontresearchStillneededconsensuslabelingconventionsperformingsupervisedlearningpromotionreuseaccessmodelsapplicationprograminterfacesSUMMARY:Futureincludefosteringreproduciblesciencecontinuinginnovationsupportingclinicalusepromotinglabelsarchitectureaccessiblecode

Similar Articles

Cited By