Simultaneous wide-field imaging of phase and magnitude of AC magnetic signal using diamond quantum magnetometry.
Kosuke Mizuno, Hitoshi Ishiwata, Yuta Masuyama, Takayuki Iwasaki, Mutsuko Hatano
Author Information
Kosuke Mizuno: Department of Electrical and Electronic Engineering, School of Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo, 152-8550, Japan.
Hitoshi Ishiwata: Department of Electrical and Electronic Engineering, School of Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo, 152-8550, Japan.
Yuta Masuyama: National Institutes for Quantum and Radiological Science and Technology, 1233 Watanuki, Takasaki, Gunma, 370-1292, Japan.
Takayuki Iwasaki: Department of Electrical and Electronic Engineering, School of Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo, 152-8550, Japan.
Mutsuko Hatano: Department of Electrical and Electronic Engineering, School of Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo, 152-8550, Japan. hatano.m.ab@m.titech.ac.jp.
Spectroscopic analysis of AC magnetic signal using diamond quantum magnetometry is a promising technique for inductive imaging. Conventional dynamic decoupling like XY8 provides a high sensitivity of an oscillating magnetic signal with intricate dependence on magnitude and phase, complicating high throughput detection of each parameter. In this study, a simple measurement scheme for independent and simultaneous detection of magnitude and phase is demonstrated by a sequential measurement protocol. Wide-field imaging experiment was performed for an oscillating magnetic field with approximately [Formula: see text]-squared observation area. Single pixel phase precision was [Formula: see text] for [Formula: see text] AC magnetic signal. Our method enables potential applications including inductive inspection and impedance imaging.
References
Degen, C. L., Reinhard, F. & Cappellaro, P. Quantum sensing. Rev. Mod. Phys. 89, 035002. https://doi.org/10.1103/RevModPhys.89.035002 (2017).
[DOI: 10.1103/RevModPhys.89.035002]
Casola, F., van der Sar, T. & Yacoby, A. Probing condensed matter physics with magnetometry based on nitrogen-vacancy centres in diamond. Nat. Rev. Mater. 3, 17088. https://doi.org/10.1038/natrevmats.2017.88 (2018).
[DOI: 10.1038/natrevmats.2017.88]
Pezzagna, S., Naydenov, B., Jelezko, F., Wrachtrup, J. & Meijer, J. Creation efficiency of nitrogen-vacancy centres in diamond. New J. Phys. 12, 065017. https://doi.org/10.1088/1367-2630/12/6/065017 (2010).
[DOI: 10.1088/1367-2630/12/6/065017]
Ozawa, H., Hatano, Y., Iwasaki, T., Harada, Y. & Hatano, M. Formation of perfectly aligned high-density NV centers in (111) CVD-grown diamonds for magnetic field imaging of magnetic particles. Jpn. J. Appl. Phys. 58, SIIB26. https://doi.org/10.7567/1347-4065/ab203c (2019).
[DOI: 10.7567/1347-4065/ab203c]
Ishiwata, H. et al. Perfectly aligned shallow ensemble nitrogen-vacancy centers in (111) diamond. Appl. Phys. Lett. 111, 043103. https://doi.org/10.1063/1.4993160 (2017).
[DOI: 10.1063/1.4993160]
Tetienne, J.-P. et al. Spin properties of dense near-surface ensembles of nitrogen-vacancy centers in diamond. Phys. Rev. B 97, 085402. https://doi.org/10.1103/PhysRevB.97.085402 (2018).
[DOI: 10.1103/PhysRevB.97.085402]
Ziem, F., Garsi, M., Fedder, H. & Wrachtrup, J. Quantitative nanoscale MRI with a wide field of view. Sci. Rep. 9, 12166. https://doi.org/10.1038/s41598-019-47084-w (2019).
[DOI: 10.1038/s41598-019-47084-w]
Steinert, S. et al. Magnetic spin imaging under ambient conditions with sub-cellular resolution. Nat. Commun. 4, 1607. https://doi.org/10.1038/ncomms2588 (2013).
[DOI: 10.1038/ncomms2588]
Horsley, A. et al. Microwave device characterization using a widefield diamond microscope. Phys. Rev. Appl. 10, 044039. https://doi.org/10.1103/PhysRevApplied.10.044039 (2018).
[DOI: 10.1103/PhysRevApplied.10.044039]
Fescenko, I. et al. Diamond magnetic microscopy of malarial hemozoin nanocrystals. Phys. Rev. Appl. 11, 034029. https://doi.org/10.1103/PhysRevApplied.11.034029 (2019).
[DOI: 10.1103/PhysRevApplied.11.034029]
Tetienne, J.-P. et al. Quantum imaging of current flow in graphene. Sci. Adv. 3, e1602429. https://doi.org/10.1126/sciadv.1602429 (2017).
[DOI: 10.1126/sciadv.1602429]
Schlussel, Y. et al. Wide-field imaging of superconductor vortices with electron spins in diamond. Phys. Rev. Appl. 10, 034032. https://doi.org/10.1103/PhysRevApplied.10.034032 (2018).
[DOI: 10.1103/PhysRevApplied.10.034032]
Lillie, S. E. et al. Imaging graphene field-effect transistors on diamond using nitrogen-vacancy microscopy. Phys. Rev. Appl. 12, 024018. https://doi.org/10.1103/PhysRevApplied.12.024018 (2019).
[DOI: 10.1103/PhysRevApplied.12.024018]
Tetienne, J.-P. et al. Apparent delocalization of the current density in metallic wires observed with diamond nitrogen-vacancy magnetometry. Phys. Rev. B 99, 014436. https://doi.org/10.1103/PhysRevB.99.014436 (2019).
[DOI: 10.1103/PhysRevB.99.014436]
Zhou, B. B. et al. Spatiotemporal mapping of a photocurrent vortex in monolayer MoS using diamond quantum sensors. Phys. Rev. X 10, 011003. https://doi.org/10.1103/PhysRevX.10.011003 (2020).
[DOI: 10.1103/PhysRevX.10.011003]
Chatzidrosos, G. et al. Eddy-current imaging with nitrogen-vacancy centers in diamond. Phys. Rev. Appl. 11, 014060. https://doi.org/10.1103/PhysRevApplied.11.014060 (2019).
[DOI: 10.1103/PhysRevApplied.11.014060]
Flanagan, I. M., Jordan, J. R. & Whittington, H. W. An inductive method for estimating the composition and size of metal particles. Meas. Sci. Technol. 1, 381–384. https://doi.org/10.1088/0957-0233/1/5/001 (1990).
[DOI: 10.1088/0957-0233/1/5/001]
Ribeiro, A. L. & Ramos, H. G. Inductive probe for flaw detection in non-magnetic metallic plates using eddy currents. In 2008 IEEE Instrumentation and Measurement Technology Conference, 1447. https://doi.org/10.1109/IMTC.2008.4547270 (IEEE, 2008).
Wolf, T. et al. Subpicotesla diamond magnetometry. Phys. Rev. X 5, 041001. https://doi.org/10.1103/PhysRevX.5.041001 (2015)
[DOI: 10.1103/PhysRevX.5.041001]
Barry, J. F. et al. Optical magnetic detection of single-neuron action potentials using quantum defects in diamond. Proc. Natl. Acad. Sci. 113, 14133–14138. https://doi.org/10.1073/pnas.1601513113 (2016).
[DOI: 10.1073/pnas.1601513113]
Masuyama, Y. et al. Extending coherence time of macro-scale diamond magnetometer by dynamical decoupling with coplanar waveguide resonator. Rev. Sci. Instrum. 89, 125007. https://doi.org/10.1063/1.5047078 (2018).
[DOI: 10.1063/1.5047078]
Ishikawa, T., Yoshizawa, A., Mawatari, Y., Kashiwaya, S. & Watanabe, H. Sensitive measurement of phase shift of an AC magnetic field by quantum sensing with multiple-pulse decoupling sequences. J. Appl. Phys. 126, 064504. https://doi.org/10.1063/1.5096610 (2019).
[DOI: 10.1063/1.5096610]
Wang, C., Fan, M., Cao, B., Ye, B. & Li, W. Novel noncontact eddy current measurement of electrical conductivity. IEEE Sens. J. 18, 9352–9359. https://doi.org/10.1109/JSEN.2018.2870676 (2018).
[DOI: 10.1109/JSEN.2018.2870676]
Deng, W. et al. Research on eddy current imaging detection of surface defects of metal plates based on compressive sensing. Math. Probl. Eng. 1–11, 2018. https://doi.org/10.1155/2018/1347563 (2018).
[DOI: 10.1155/2018/1347563]
de Lange, G., Ristè, D., Dobrovitski, V. V. & Hanson, R. Single-spin magnetometry with multipulse sensing sequences. Phys. Rev. Lett. 106, 080802. https://doi.org/10.1103/PhysRevLett.106.080802 (2011).
[DOI: 10.1103/PhysRevLett.106.080802]
Mizuno, K. et al. Wide-field diamond magnetometry with millihertz frequency resolution and nanotesla sensitivity. AIP Adv. 8, 125316. https://doi.org/10.1063/1.5048265 (2018).
[DOI: 10.1063/1.5048265]
Schmitt, S. et al. Submillihertz magnetic spectroscopy performed with a nanoscale quantum sensor. Science 356, 832–837. https://doi.org/10.1126/science.aam5532 (2017).
[DOI: 10.1126/science.aam5532]
Boss, J. M., Cujia, K. S., Zopes, J. & Degen, C. L. Quantum sensing with arbitrary frequency resolution. Science 356, 837–840. https://doi.org/10.1126/science.aam7009 (2017).
[DOI: 10.1126/science.aam7009]
Ishikawa, T., Yoshizawa, A., Mawatari, Y., Watanabe, H. & Kashiwaya, S. Influence of dynamical decoupling sequences with finite-width pulses on quantum sensing for AC magnetometry. Phys. Rev. Appl. 10, 054059. https://doi.org/10.1103/PhysRevApplied.10.054059 (2018).
[DOI: 10.1103/PhysRevApplied.10.054059]
Beauchamp, K. G. Signal Processing: Using Analog and Digital Techniques (Allen & Unwin, London, 1973).