Genome-Wide Identification of Genes Involved in General Acid Stress and Fluoride Toxicity in .

Nichole R Johnston, Sunitha Nallur, Patricia B Gordon, Kathryn D Smith, Scott A Strobel
Author Information
  1. Nichole R Johnston: Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States.
  2. Sunitha Nallur: Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States.
  3. Patricia B Gordon: Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States.
  4. Kathryn D Smith: Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States.
  5. Scott A Strobel: Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States.

Abstract

Hydrofluoric acid elicits cell cycle arrest through a mechanism that has long been presumed to be linked with the high affinity of fluoride to metals. However, we have recently found that the acid stress from fluoride exposure is sufficient to elicit many of the hallmark phenotypes of fluoride toxicity. Here we report the systematic screening of genes involved in fluoride resistance and general acid resistance using a genome deletion library in . We compare these to a variety of acids - 2,4-dinitrophenol, FCCP, hydrochloric acid, and sulfuric acid - none of which has a high metal affinity. Pathways involved in endocytosis, vesicle trafficking, pH maintenance, and vacuolar function are of particular importance to fluoride tolerance. The majority of genes conferring resistance to fluoride stress also enhanced resistance to general acid toxicity. Genes whose expression regulate Golgi-mediated vesicle transport were specific to fluoride resistance, and may be linked with fluoride-metal interactions. These results support the notion that acidity is an important and underappreciated principle underlying the mechanisms of fluoride toxicity.

Keywords

References

  1. Chem Biol Interact. 2010 Nov 5;188(2):319-33 [PMID: 20650267]
  2. Chem Res Toxicol. 2019 Nov 18;32(11):2305-2319 [PMID: 31576749]
  3. Adv Exp Med Biol. 2016;892:33-68 [PMID: 26721270]
  4. J Mol Biol. 1970 Feb 14;47(3):335-52 [PMID: 5418164]
  5. Basic Life Sci. 1973;1:377-92 [PMID: 4773153]
  6. Traffic. 2012 Mar;13(3):468-82 [PMID: 22118530]
  7. Nat Methods. 2008 Aug;5(8):719-25 [PMID: 18622398]
  8. Biochim Biophys Acta. 1998 Aug 14;1404(1-2):161-71 [PMID: 9714787]
  9. Cells. 2019 Mar 23;8(3): [PMID: 30909602]
  10. FEMS Yeast Res. 2016 Aug;16(5): [PMID: 27370212]
  11. J Biol Chem. 2007 Mar 9;282(10):7125-36 [PMID: 17215245]
  12. Yeast. 2004 Aug;21(11):927-46 [PMID: 15334557]
  13. J Cell Sci. 2014 Dec 1;127(Pt 23):4987-93 [PMID: 25453113]
  14. Biophys J. 1983 Mar;41(3):381-98 [PMID: 6838976]
  15. Nat Rev Mol Cell Biol. 2009 Sep;10(9):597-608 [PMID: 19696797]
  16. Can J Microbiol. 1995 Nov;41(11):955-64 [PMID: 7497353]
  17. FEMS Yeast Res. 2009 Mar;9(2):202-16 [PMID: 19220866]
  18. Front Microbiol. 2018 Feb 21;9:274 [PMID: 29515554]
  19. J Biol Chem. 1994 May 6;269(18):13325-30 [PMID: 8175763]
  20. mSphere. 2017 Jan 25;2(1): [PMID: 28144629]
  21. Biotechnol Biofuels. 2017 Apr 19;10:96 [PMID: 28428821]
  22. Pharmacol Toxicol. 1989 May;64(5):426-8 [PMID: 2771869]
  23. J Biol Chem. 2016 Apr 15;291(16):8701-8 [PMID: 26893374]
  24. J Cell Biol. 1987 Aug;105(2):679-89 [PMID: 2887575]
  25. Biochem J. 2006 Apr 1;395(1):73-80 [PMID: 16316315]
  26. Biochim Biophys Acta. 2013 Nov;1828(11):2672-81 [PMID: 23911577]
  27. Appl Environ Microbiol. 2005 May;71(5):2239-43 [PMID: 15870306]
  28. Appl Environ Microbiol. 2016 May 02;82(10):3121-3130 [PMID: 26994074]
  29. Sci Rep. 2018 May 18;8(1):7860 [PMID: 29777118]
  30. Appl Microbiol Biotechnol. 2013 Aug;97(16):7405-16 [PMID: 23828602]
  31. Genetics. 2014 Jun;197(2):451-65 [PMID: 24939991]
  32. Front Oncol. 2012 Sep 21;2:118 [PMID: 23050242]
  33. Mol Biol Cell. 2002 Jun;13(6):2045-56 [PMID: 12058068]
  34. Mol Metab. 2013 Nov 28;3(2):114-23 [PMID: 24634817]
  35. J Biol Chem. 2014 Jun 13;289(24):16736-47 [PMID: 24753258]
  36. Eur J Cell Biol. 2004 Aug;83(8):389-402 [PMID: 15506563]
  37. Cardiovasc Res. 2006 Nov 1;72(2):313-21 [PMID: 16950237]
  38. Biotechnol Biofuels. 2018 Oct 29;11:297 [PMID: 30450126]
  39. Genetics. 2015 Feb;199(2):315-58 [PMID: 25657349]
  40. J Biol Chem. 2008 Jul 18;283(29):20309-19 [PMID: 18502746]
  41. Ann Acad Med Stetin. 2005;51(2):69-85 [PMID: 16519100]
  42. Cold Spring Harb Perspect Biol. 2014 Jul 01;6(7):a016964 [PMID: 24984778]
  43. J Cell Sci. 2018 Nov 30;131(23): [PMID: 30504135]
  44. Metallomics. 2019 Jul 17;11(7):1298-1309 [PMID: 31210222]
  45. J Dent Res. 1990 Feb;69 Spec No:660-7; discussion 682-3 [PMID: 2179327]
  46. PLoS One. 2011 Mar 14;6(3):e17619 [PMID: 21423800]
  47. Proc Natl Acad Sci U S A. 1966 Aug;56(2):701-8 [PMID: 5229987]
  48. World J Gastroenterol. 2006 Feb 21;12(7):1144-8 [PMID: 16534862]
  49. Arch Microbiol. 1996 Nov;166(5):315-20 [PMID: 8929277]
  50. J Biol Chem. 2006 Sep 29;281(39):29011-21 [PMID: 16849329]
  51. J Clin Invest. 1971 Aug;50(8):1731-7 [PMID: 4329003]
  52. FEMS Yeast Res. 2016 Nov;16(7): [PMID: 27620460]
  53. mSphere. 2020 May 27;5(3): [PMID: 32461271]
  54. PLoS One. 2014 Jun 25;9(6):e100768 [PMID: 24964137]
  55. Microb Cell Fact. 2010 Oct 25;9:79 [PMID: 20973990]
  56. OMICS. 2010 Oct;14(5):525-40 [PMID: 20955006]
  57. J Food Sci. 2015 Apr;80(4):M800-8 [PMID: 25777552]
  58. J Biol Chem. 1948 Apr;173(2):807 [PMID: 18910739]
  59. J Biol Chem. 2013 Apr 19;288(16):11366-77 [PMID: 23457300]
  60. PLoS One. 2008 Jul 23;3(7):e2758 [PMID: 18648502]
  61. Microbiol Mol Biol Rev. 2007 Sep;71(3):452-62 [PMID: 17804666]
  62. FEMS Yeast Res. 2012 Nov;12(7):755-60 [PMID: 22741558]
  63. Proc Natl Acad Sci U S A. 2013 Nov 19;110(47):19018-23 [PMID: 24173035]
  64. J Cell Biol. 2001 Dec 24;155(7):1199-212 [PMID: 11748249]
  65. Arch Toxicol. 1998 Dec;72(12):798-806 [PMID: 9950077]
  66. Int J Parasitol. 2001 Oct;31(12):1381-91 [PMID: 11566305]

Word Cloud

Created with Highcharts 10.0.0fluorideacidresistancetoxicitygeneslinkedhighaffinitystressinvolvedgeneral-vesicleGenesHydrofluoricelicitscellcyclearrestmechanismlongpresumedmetalsHoweverrecentlyfoundexposuresufficientelicitmanyhallmarkphenotypesreportsystematicscreeningusinggenomedeletionlibrarycomparevarietyacids24-dinitrophenolFCCPhydrochloricsulfuricnonemetalPathwaysendocytosistraffickingpHmaintenancevacuolarfunctionparticularimportancetolerancemajorityconferringalsoenhancedwhoseexpressionregulateGolgi-mediatedtransportspecificmayfluoride-metalinteractionsresultssupportnotionacidityimportantunderappreciatedprincipleunderlyingmechanismsGenome-WideIdentificationInvolvedGeneralAcidStressFluorideToxicitynutrientuptakevacuolevesicle-transportyeast

Similar Articles

Cited By