Pathways for horizontal gene transfer in bacteria revealed by a global map of their plasmids.
Santiago Redondo-Salvo, Raúl Fernández-López, Raúl Ruiz, Luis Vielva, María de Toro, Eduardo P C Rocha, M Pilar Garcillán-Barcia, Fernando de la Cruz
Author Information
Santiago Redondo-Salvo: Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, C/Albert Einstein 22, 39011, Santander, Spain. ORCID
Raúl Fernández-López: Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, C/Albert Einstein 22, 39011, Santander, Spain. ORCID
Raúl Ruiz: Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, C/Albert Einstein 22, 39011, Santander, Spain. ORCID
Luis Vielva: Departamento de Ingeniería de las Comunicaciones, Universidad de Cantabria, Santander, Spain. ORCID
María de Toro: CIBIR, Centro de Investigación Biomédica de La Rioja, Logroño, Spain.
Eduardo P C Rocha: Microbial Evolutionary Genomics, Institut Pasteur, CNRS, UMR3525, Paris, France. ORCID
M Pilar Garcillán-Barcia: Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, C/Albert Einstein 22, 39011, Santander, Spain. ORCID
Fernando de la Cruz: Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, C/Albert Einstein 22, 39011, Santander, Spain. delacruz@unican.es.
Plasmids can mediate horizontal gene transfer of antibiotic resistance, virulence genes, and other adaptive factors across bacterial populations. Here, we analyze genomic composition and pairwise sequence identity for over 10,000 reference plasmids to obtain a global map of the prokaryotic plasmidome. Plasmids in this map organize into discrete clusters, which we call plasmid taxonomic units (PTUs), with high average nucleotide identity between its members. We identify 83 PTUs in the order Enterobacterales, 28 of them corresponding to previously described archetypes. Furthermore, we develop an automated algorithm for PTU identification, and validate its performance using stochastic blockmodeling. The algorithm reveals a total of 276 PTUs in the bacterial domain. Each PTU exhibits a characteristic host distribution, organized into a six-grade scale (I-VI), ranging from plasmids restricted to a single host species (grade I) to plasmids able to colonize species from different phyla (grade VI). More than 60% of the plasmids in the global map are in groups with host ranges beyond the species barrier.
References
Narra, H. P. & Ochman, H. Of what use is sex to bacteria? Curr. Biol. 16, R705–R710 (2006).
[PMID: 16950097]
Popa, O., Hazkani-Covo, E., Landan, G., Martin, W. & Dagan, T. Directed networks reveal genomic barriers and DNA repair bypasses to lateral gene transfer among prokaryotes. Genome Res. 21, 599–609 (2011).
[PMID: 21270172]
Shapiro, B. J. How clonal are bacteria over time? Curr. Opin. Microbiol. 31, 116–123 (2016).
[PMID: 27057964]
Jain, C., Rodriguez-R, L. M., Phillippy, A. M., Konstantinidis, K. T. & Aluru, S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat. Commun. 9, 5114 (2018).
[PMID: 30504855]
Polz, M. F., Alm, E. J. & Hanage, W. P. Horizontal gene transfer and the evolution of bacterial and archaeal population structure. Trends Genet. 29, 170–175 (2013).
[PMID: 23332119]
Shapiro, B. J. et al. Population genomics of early events in the ecological differentiation of bacteria. Science 336, 48–51 (2012).
[PMID: 22491847]
Smillie, C. S. et al. Ecology drives a global network of gene exchange connecting the human microbiome. Nature 480, 241–244 (2011).
[PMID: 22037308]
Brito, I. L. et al. Mobile genes in the human microbiome are structured from global to individual scales. Nature 535, 435–439 (2016).
[PMID: 27409808]
Andam, C. P. & Gogarten, J. P. Biased gene transfer in microbial evolution. Nat. Rev. Microbiol. 9, 543–555 (2011).
[PMID: 21666709]
Soucy, S. M., Huang, J. & Gogarten, J. P. Horizontal gene transfer: building the web of life. Nat. Rev. Genet. 16, 472–482 (2015).
[PMID: 26184597]
Puigbò, P., Wolf, Y. I. & Koonin, E. V. The tree and net components of prokaryote evolution. Genome Biol. Evol. 2, 745–756 (2010).
[PMID: 20889655]
Achtman, M. & Wagner, M. Microbial diversity and the genetic nature of microbial species. Nat. Rev. Microbiol. 6, 431–440 (2008).
[PMID: 18461076]
Iranzo, J., Puigbò, P., Lobkovsky, A. E., Wolf, Y. I. & Koonin, E. V. Inevitability of genetic parasites. Genome Biol. Evol. 8, 2856–2869 (2016).
[PMID: 27503291]
Koonin, E. V. Horizontal gene transfer: essentiality and evolvability in prokaryotes, and roles in evolutionary transitions. F1000Res. 5, 1805 (2016).
Hall, J. P. J., Brockhurst, M. A. & Harrison, E. Sampling the mobile gene pool: innovation via horizontal gene transfer in bacteria. Philos. Trans. R. Soc. B 372, 20160424 (2017).
Popa, O., Landan, G. & Dagan, T. Phylogenomic networks reveal limited phylogenetic range of lateral gene transfer by transduction. ISME J. 11, 543–554 (2017).
[PMID: 27648812]
Cury, J., Oliveira, P. H., de la Cruz, F. & Rocha, E. P. C. Host range and genetic plasticity explain the coexistence of integrative and extrachromosomal mobile genetic elements. Mol. Biol. Evol. 35, 2230–2239 (2018).
[PMID: 29905872]
Klümper, U. et al. Metal stressors consistently modulate bacterial conjugal plasmid uptake potential in a phylogenetically conserved manner. ISME J. 11, 152–165 (2017).
[PMID: 27482924]
Zhang, M., Visser, S. Pereira e Silva, M. C. & van Elsas, J. D. IncP-1 and PromA group plasmids are major providers of horizontal gene transfer capacities across bacteria in the mycosphere of different soil fungi. Microb. Ecol. 69, 169–179 (2015).
Klümper, U. et al. Broad host range plasmids can invade an unexpectedly diverse fraction of a soil bacterial community. ISME J. 9, 934–945 (2015).
[PMID: 25333461]
Hoffmann, A. et al. Intergeneric transfer of conjugative and mobilizable plasmids harbored by Escherichia coli in the gut of the soil microarthropod Folsomia candida(Collembola). Appl. Environ. Microbiol. 64, 2652–2659 (1998).
[PMID: 9647844]
Porse, A., Schønning, K., Munck, C. & Sommer, M. O. A. Survival and evolution of a large multidrug resistance plasmid in new clinical bacterial hosts. Mol. Biol. Evol. 33, 2860–2873 (2016).
[PMID: 27501945]
Stalder, T. et al. Emerging patterns of plasmid-host coevolution that stabilize antibiotic resistance. Sci. Rep. 7, 4853 (2017).
[PMID: 28687759]
Loftie-Eaton, W. et al. Evolutionary paths that expand plasmid host-range: implications for spread of antibiotic resistance. Mol. Biol. Evol. 33, 885–897 (2016).
[PMID: 26668183]
Yano, H. et al. Host range diversification within the IncP-1 plasmid group. Microbiology 159, 2303–2315 (2013).
[PMID: 24002747]
Sen, D., Brown, C. J., Top, E. M. & Sullivan, J. Inferring the evolutionary history of IncP-1 plasmids despite incongruence among backbone gene trees. Mol. Biol. Evol. 30, 154–166 (2013).
[PMID: 22936717]
Suzuki, H., Yano, H., Brown, C. J. & Top, E. M. Predicting plasmid promiscuity based on genomic signature. J. Bacteriol. 192, 6045–6055 (2010).
[PMID: 20851899]
Meynell, E., Datta, N., Lawn, A. M. & Meynell, G. G. Ancestral relationships of transmissible bacterial plasmids. J. Gen. Microbiol. 32, 55–83, (1968).
Datta, N. & Hedges, R. W. Compatibility goups among fi − R factors. Nature 234, 222–223 (1971).
[PMID: 5002028]
Norberg, P., Bergström, M., Jethava, V., Dubhashi, D. & Hermansson, M. The IncP-1 plasmid backbone adapts to different host bacterial species and evolves through homologous recombination. Nat. Commun. 2, 268 (2011).
[PMID: 21468020]
Fernández-López, R. et al. Dynamics of the IncW genetic backbone imply general trends in conjugative plasmid evolution. FEMS Microbiol. Rev. 30, 942–966 (2006).
[PMID: 17026718]
Fernandez-Lopez, R., de Toro, M., Moncalian, G., Garcillan-Barcia, M. P. & de la Cruz, F. Comparative genomics of the conjugation region of F-like plasmids: five shades of F. Front. Mol. Biosci. 3, 71 (2016).
[PMID: 27891505]
He, S. et al. Mechanisms of evolution in high-consequence drug resistance plasmids. mBio 7, e01987–16 (2016).
[PMID: 27923922]
Smillie, C., Garcillán-Barcia, M. P., Francia, M. V., Rocha, E. P. C. & Cruz, Fdela Mobility of plasmids. Microbiol. Mol. Biol. Rev. 74, 434–452 (2010).
[PMID: 20805406]
Garcillán-Barcia, M. P., Alvarado, A. & de la Cruz, F. Identification of bacterial plasmids based on mobility and plasmid population biology. FEMS Microbiol. Rev. 35, 936–956 (2011).
[PMID: 21711366]
Fernandez-Lopez, R., Redondo, S., Garcillan-Barcia, M. P. & de la Cruz, F. Towards a taxonomy of conjugative plasmids. Curr. Opin. Microbiol. 38, 106–113 (2017).
[PMID: 28586714]
Francia, M. V. et al. A classification scheme for mobilization regions of bacterial plasmids. FEMS Microbiol. Rev. 28, 79–100 (2004).
[PMID: 14975531]
Shapiro, B. J. & Polz, M. F. Ordering microbial diversity into ecologically and genetically cohesive units. Trends Microbiol. 22, 235–247 (2014).
[PMID: 24630527]
Lanza, V. F., Baquero, F., de la Cruz, F. & Coque, T. M. AcCNET (Accessory Genome Constellation Network): comparative genomics software for accessory genome analysis using bipartite networks. Bioinformatics 33, 283–285 (2017).
[PMID: 27663497]
Varghese, N. J. et al. Microbial species delineation using whole genome sequences. Nucleic Acids Res. 43, 6761–6771 (2015).
[PMID: 26150420]
Cohan, F. M. Systematics: The Cohesive Nature of Bacterial Species Taxa. Curr. Biol. 29, R169–R172 (2019).
[PMID: 30836089]
Holland, P. W., Laskey, K. B. & Leinhardt, S. Stochastic blockmodels: First steps. Soc. Netw. 5, 109–137 (1983).
Peixoto, T. P. In Advances in Network Clustering and Blockmodeling (John Wiley & Sons, Ltd, 2019) pp. 289–332.
Doolittle, W. F. & Zhaxybayeva, O. On the origin of prokaryotic species. Genome Res. 19, 744–756 (2009).
[PMID: 19411599]
Jones, C. S., Osborne, D. J. & Stanley, J. Molecular comparison of the IncX plasmids allows division into IncX1 and IncX2 subgroups. Microbiology 139, 735–741 (1993).
Johnson, T. J. et al. Expansion of the IncX plasmid family for improved identification and typing of novel plasmids in drug-resistant Enterobacteriaceae. Plasmid 68, 43–50 (2012).
[PMID: 22470007]
García-Fernández, A. et al. Multilocus sequence typing of IncN plasmids. J. Antimicrob. Chemother. 66, 1987–1991 (2011).
[PMID: 21653604]
Roussel, A. F. & Chabbert, Y. A. Taxonomy and epidemiology of gram-negative bacterial plasmids studied by DNA-DNA filter hybridization in formamide. Microbiology 104, 269–276 (1978).
Villa, L., García-Fernández, A., Fortini, D. & Carattoli, A. Replicon sequence typing of IncF plasmids carrying virulence and resistance determinants. J. Antimicrob. Chemother. 65, 2518–2529 (2010).
[PMID: 20935300]
Garcillán-Barcia, M. P., Redondo-Salvo, S., Vielva, L. & de la Cruz, F. In Horizontal Gene Transfer: Methods and Protocols (ed. de la Cruz, F.) (Springer US, 2020) pp. 295–308.
Carattoli, A. et al. In silico detection and typing of plasmids using plasmidfinder and plasmid multilocus sequence typing. Antimicrob. Agents Chemother. 58, 3895–3903 (2014).
[PMID: 24777092]
Jain, C., Koren, S., Dilthey, A., Phillippy, A. M. & Aluru, S. A fast adaptive algorithm for computing whole-genome homology maps. Bioinformatics 34, i748–i756 (2018).
[PMID: 30423094]
Goris, J. et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int. J. Syst. Evol. Microbiol. 57, 81–91 (2007).
Rosen, M. J., Davison, M., Bhaya, D. & Fisher, D. S. Fine-scale diversity and extensive recombination in a quasisexual bacterial population occupying a broad niche. Science 348, 1019–1023 (2015).
[PMID: 26023139]
Didelot, X. & Maiden, M. C. J. Impact of recombination on bacterial evolution. Trends Microbiol. 18, 315–322 (2010).
[PMID: 20452218]
De Gelder, L., Ponciano, J. M., Joyce, P. & Top, E. M. Stability of a promiscuous plasmid in different hosts: no guarantee for a long-term relationship. Microbiology 153, 452–463 (2007).
[PMID: 17259616]
Ambrose, S. J., Harmer, C. J. & Hall, R. M. Evolution and typing of IncC plasmids contributing to antibiotic resistance in Gram-negative bacteria. Plasmid 99, 40–55 (2018).
[PMID: 30081066]
Pruitt, K. D., Tatusova, T. & Maglott, D. R. NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res. 35, D61–D65 (2007).
[PMID: 17130148]
Agarwala, R. et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 46, D8–D13 (2018).
Hauser, M., Mayer, C. E. & Söding, J. kClust: fast and sensitive clustering of large protein sequence databases. BMC Bioinforma. 14, 248 (2013).
Bastian, M., Heymann, S. & Jacomy, M. Gephi: An Open Source Software for Exploring and Manipulating Networks (AAAI Publications, 2009).
Jacomy, M., Venturini, T., Heymann, S. & Bastian, M. ForceAtlas2, a continuous graph layout algorithm for handy network visualization designed for the gephi software. PLoS ONE 9, e98679 (2014).
[PMID: 24914678]
Fruchterman, T. M. J. & Reingold, E. M. Graph drawing by force-directed placement. Softw. Pract. Exp. 21, 1129–1164 (1991).
Noack, A. In Graph Drawing (ed. Liotta, G.) (Springer, 2004) pp. 425–436.
Krzywinski, M. et al. Circos: An information aesthetic for comparative genomics. Genome Res. 19, 1639–1645 (2009).
[PMID: 2752132]
Fortunato, S. Community detection in graphs. Phys. Rep. 486, 75–174 (2010).
Peixoto, T. P. The graph-tool python library. https://doi.org/10.6084/m9.figshare.1164194.v14 (2017).