An automated pressure-swing absorption system to administer low oxygen therapy for persons with spinal cord injury.

A Q Tan, J M Papadopoulos, A N Corsten, R D Trumbower
Author Information
  1. A Q Tan: Department of Physical Medicine & Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, 1575 Cambridge Street, MA 02138, USA; Spaulding Research Institute, Spaulding Rehabilitation Hospital, 1575 Cambridge Street, Boston, MA 02138, USA.
  2. J M Papadopoulos: Spaulding Research Institute, Spaulding Rehabilitation Hospital, 1575 Cambridge Street, Boston, MA 02138, USA.
  3. A N Corsten: Spaulding Research Institute, Spaulding Rehabilitation Hospital, 1575 Cambridge Street, Boston, MA 02138, USA.
  4. R D Trumbower: Department of Physical Medicine & Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, 1575 Cambridge Street, MA 02138, USA; Spaulding Research Institute, Spaulding Rehabilitation Hospital, 1575 Cambridge Street, Boston, MA 02138, USA. Electronic address: randy.trumbower@mgh.harvard.edu.

Abstract

Mild episodes of breathing low oxygen (O) (i.e., acute intermittent hypoxia, AIH) elicits rapid mechanisms of neural plasticity that enhance respiratory and non-respiratory motor function after spinal cord injury (SCI). Despite promising outcomes in humans and rodents with SCI, the translational potential of AIH as a clinical therapy remains dependent on a safer and more reliable air delivery system. The purpose of this study is to investigate the performance of a novel AIH delivery system to overcome inconsistencies in human AIH protocols using a hand-operated (manual) delivery system. Specifically, we characterized system performance of AIH delivery in terms of flow rate, O concentration, dose timing, and air temperature. Our data show that a novel 'automated' delivery system: i) produces reliable AIH with a goodness-of-fit at 98.1% of 'ideal'; ii) eliminates dose timing errors via programmable solenoid switches; iii) reduces fluctuations in O to less than 0.01%; and iv) delivers 62.7% more air flow than the 'manual' delivery method. Automated physiological recordings, threshold detection, and visual feedback of the participant's blood O saturation, heart rate, and blood pressure ensures real-time user safety. In summary, the 'automated' system outperformed the 'manual' delivery method in terms of accuracy, reliability, and safety. The 'automated' system offers several design features that move the technology closer to a medically approved treatment for clinical and home use.

Keywords

References

  1. Am J Respir Crit Care Med. 2014 Jan 1;189(1):57-65 [PMID: 24224903]
  2. Elife. 2018 Apr 24;7: [PMID: 29688171]
  3. PLoS One. 2012;7(11):e49074 [PMID: 23152851]
  4. Environ Health. 2009 Oct 27;8:48 [PMID: 19860870]
  5. J Spinal Cord Med. 2017 May;40(3):295-303 [PMID: 26856344]
  6. J Neurosci. 2012 Mar 14;32(11):3591-600 [PMID: 22423083]
  7. Curr Phys Med Rehabil Rep. 2020 Sep;8(3):188-198 [PMID: 33738145]
  8. Nat Neurosci. 2004 Jan;7(1):48-55 [PMID: 14699417]
  9. J Appl Physiol (1985). 1989 Mar;66(3):1071-8 [PMID: 2496083]
  10. J Appl Physiol. 1972 Jul;33(1):47-54 [PMID: 5037410]
  11. Springerplus. 2014 Sep 02;3:496 [PMID: 25279290]
  12. BMC Res Notes. 2013 Jul 21;6:282 [PMID: 23870165]
  13. Physiol Behav. 2017 Dec 1;182:27-33 [PMID: 28939427]
  14. J Neurotrauma. 2017 May 1;34(9):1803-1812 [PMID: 27329506]
  15. Neurology. 2014 Jan 14;82(2):104-13 [PMID: 24285617]
  16. J Neurotrauma. 2019 Nov 1;36(21):2991-3004 [PMID: 31099299]
  17. Arch Clin Neuropsychol. 2016 Jun;31(4):332-42 [PMID: 27084733]
  18. Neurorehabil Neural Repair. 2012 Feb;26(2):163-72 [PMID: 21821826]
  19. Neurorehabil Neural Repair. 2019 Nov;33(11):911-921 [PMID: 31524075]
  20. BMC Neurol. 2020 Jul 8;20(1):273 [PMID: 32641012]
  21. Front Evol Neurosci. 2012 Jan 03;3:7 [PMID: 22319494]
  22. J Appl Physiol (1985). 2015 Dec 15;119(12):1455-65 [PMID: 25997947]
  23. Am J Ther. 2012 Jan;19(1):e1-7 [PMID: 21048432]
  24. Neurology. 2017 Oct 31;89(18):1904-1907 [PMID: 28972191]
  25. J Spinal Cord Med. 2016 May;39(3):370-1 [PMID: 27193177]

Grants

  1. R01 HD081274/NICHD NIH HHS

MeSH Term

Automation
Blood Pressure
Drug Delivery Systems
Feedback, Sensory
Female
Healthy Volunteers
Heart Rate
Humans
Male
Oxygen
Oxygen Inhalation Therapy
Recovery of Function
Reproducibility of Results
Spinal Cord Injuries
Temperature

Chemicals

Oxygen

Word Cloud

Created with Highcharts 10.0.0deliverysystemAIHOcordinjuryair'automated'lowoxygenfunctionspinalSCIclinicaltherapyreliableperformancenoveltermsflowratedosetiming'manual'methodbloodsafetyMildepisodesbreathingieacuteintermittenthypoxiaelicitsrapidmechanismsneuralplasticityenhancerespiratorynon-respiratorymotorDespitepromisingoutcomeshumansrodentstranslationalpotentialremainsdependentsaferpurposestudyinvestigateovercomeinconsistencieshumanprotocolsusinghand-operatedmanualSpecificallycharacterizedconcentrationtemperaturedatashowsystem:producesgoodness-of-fit981%'ideal'iieliminateserrorsviaprogrammablesolenoidswitchesiiireducesfluctuationsless001%ivdelivers627%Automatedphysiologicalrecordingsthresholddetectionvisualfeedbackparticipant'ssaturationheartpressureensuresreal-timeusersummaryoutperformedaccuracyreliabilityoffersseveraldesignfeaturesmovetechnologyclosermedicallyapprovedtreatmenthomeuseautomatedpressure-swingabsorptionadministerpersonsBreathingHypoxiaMotorOxygenPressureswingadsorptionRehabilitationSpinal

Similar Articles

Cited By