Assessing the Relationship between Gestational Glycemic Control and Risk of Preterm Birth in Women with Type 1 Diabetes: A Joint Modeling Approach.

Resmi Gupta, Jane C Khoury, Mekibib Altaye, Roman Jandarov, Rhonda D Szczesniak
Author Information
  1. Resmi Gupta: Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital, Cincinnati, Ohio, USA. ORCID
  2. Jane C Khoury: Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital, Cincinnati, Ohio, USA.
  3. Mekibib Altaye: Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital, Cincinnati, Ohio, USA.
  4. Roman Jandarov: Department of Biostatistics, University of Cincinnati, Cincinnati, Ohio, USA.
  5. Rhonda D Szczesniak: Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital, Cincinnati, Ohio, USA. ORCID

Abstract

BACKGROUND: Characterizing maternal glucose sampling over the course of the entire pregnancy is an important step toward improvement in prediction of adverse birth outcome, such as Preterm Birth, for women with Type 1 diabetes mellitus (T1DM).
OBJECTIVES: To characterize the relationship between the gestational glycemic profile and risk of Preterm Birth using a joint modeling approach.
METHODS: A joint model was developed to simultaneously characterize the relationship between a longitudinal outcome (daily blood glucose sampling) and an event process (Preterm Birth). A linear mixed effects model using natural cubic splines was fitted to predict the longitudinal submodel. Covariates included mother's age at last menstrual period, age at diabetes onset, body mass index, hypertension, retinopathy, and nephropathy. Various association structures (value, value plus slope, and area under the curve) were examined before selecting the final joint model. We compared the joint modeling approach to the time-dependent Cox model (TDCM).
RESULTS: A total of 16,480 glucose readings over gestation (range: 50-260 days) with 32 women (28%) having Preterm Birth was included in the study. Mother's age at last menstrual period and age at diabetes onset were statistically significant (beta = 1.29, 95% CI 1.10, 1.72; beta = 0.84, 95% CI 0.62, 0.98) for the longitudinal submodel, reflecting that older women tended to have higher mean blood glucose and those with later diabetes onset tended to have a lower mean blood glucose level. The presence of nephropathy was statistically significant in the event submodel (beta = 2.29, 95% CI 1.05, 4.48). Cumulative association parameterization provided the best joint model fit. The joint model provided better fit compared to the time-dependent Cox model (DIC (JM) = 19,895; DIC (TDCM) = 19,932).
CONCLUSION: The joint model approach was able to simultaneously characterize the glycemic profile and assess the risk of Preterm Birth and provided additional insights and a better model fit compared to the time-dependent Cox model.

References

  1. Biometrics. 1994 Dec;50(4):1003-14 [PMID: 7786983]
  2. J Comput Graph Stat. 2017;26(1):121-133 [PMID: 28239247]
  3. Biostatistics. 2000 Dec;1(4):465-80 [PMID: 12933568]
  4. Stat Methods Med Res. 2014 Feb;23(1):3-10 [PMID: 24419399]
  5. Diabetes Care. 2004 Dec;27(12):2824-8 [PMID: 15562192]
  6. BMC Med Res Methodol. 2016 Sep 07;16(1):117 [PMID: 27604810]
  7. Ann Am Thorac Soc. 2019 Jan;16(1):22-28 [PMID: 30230362]
  8. Biometrics. 2008 Dec;64(4):1238-46 [PMID: 18261160]
  9. J Matern Fetal Med. 2000 Jan-Feb;9(1):35-41 [PMID: 10757433]
  10. Lifetime Data Anal. 2011 Jan;17(1):80-100 [PMID: 20549344]
  11. Stat Med. 2011 May 30;30(12):1366-80 [PMID: 21337596]
  12. J Matern Fetal Neonatal Med. 2002 Apr;11(4):245-8 [PMID: 12375678]
  13. Diabetologia. 2011 Nov;54(11):2771-8 [PMID: 21866407]
  14. Curr Diab Rep. 2016 Aug;16(8):76 [PMID: 27337958]
  15. Oncotarget. 2017 Sep 16;8(46):80679-80687 [PMID: 29113335]
  16. Biometrics. 2003 Jun;59(2):221-8 [PMID: 12926706]
  17. J Diabetes Res. 2017;2017:2852913 [PMID: 28280744]
  18. Biometrics. 1997 Mar;53(1):330-9 [PMID: 9147598]
  19. Ann Intern Med. 2019 May 21;170(10):691-701 [PMID: 31009941]
  20. J Matern Fetal Med. 2000 Jan-Feb;9(1):14-20 [PMID: 10757430]
  21. J Diabetes Sci Technol. 2010 Mar 01;4(2):435-9 [PMID: 20307405]
  22. Biometrics. 2011 Sep;67(3):819-29 [PMID: 21306352]
  23. Int J Biostat. 2018 Jan 31;14(1): [PMID: 29389664]
  24. Obes Rev. 2014 Oct;15(10):804-11 [PMID: 25073871]
  25. Gynecol Endocrinol. 2016 Oct;32(sup2):52-55 [PMID: 27759454]
  26. Diabetes Care. 2006 Dec;29(12):2730-2 [PMID: 17130215]

Grants

  1. R01 DK109956/NIDDK NIH HHS

MeSH Term

Adult
Blood Glucose
Body Mass Index
Diabetes Mellitus, Type 1
Female
Glycemic Control
Humans
Hypoglycemic Agents
Infant, Newborn
Insulin
Models, Theoretical
Pregnancy
Pregnancy in Diabetics
Premature Birth
Risk Factors
Young Adult

Chemicals

Blood Glucose
Hypoglycemic Agents
Insulin

Word Cloud

Created with Highcharts 10.0.0modeljointbirthglucosepreterm1diabetesagewomencharacterizeapproachlongitudinalbloodsubmodelonsetcomparedtime-dependentCox95%CIprovidedfitsamplingoutcomerelationshipglycemicprofileriskusingmodelingsimultaneouslyeventincludedlastmenstrualperiodnephropathyassociationvalueTDCMstatisticallysignificant290tendedmeanbetterDIC =19BACKGROUND:CharacterizingmaternalcourseentirepregnancyimportantsteptowardimprovementpredictionadversetypemellitusT1DMOBJECTIVES:gestationalMETHODS:developeddailyprocesslinearmixedeffectsnaturalcubicsplinesfittedpredictCovariatesmother'sbodymassindexhypertensionretinopathyVariousstructuresplusslopeareacurveexaminedselectingfinalRESULTS:total16480readingsgestationrange:50-260days3228%studyMother'sbeta = 11072beta = 0846298reflectingolderhigherlaterlowerlevelpresencebeta = 205448CumulativeparameterizationbestJM895932CONCLUSION:ableassessadditionalinsightsAssessingRelationshipGestationalGlycemicControlRiskPretermBirthWomenTypeDiabetes:JointModelingApproach

Similar Articles

Cited By