Age-Related Hearing Loss Is Dominated by Damage to Inner Ear Sensory Cells, Not the Cellular Battery That Powers Them.

Pei-Zhe Wu, Jennifer T O'Malley, Victor de Gruttola, M Charles Liberman
Author Information
  1. Pei-Zhe Wu: Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, Massachusetts 02114 Peizhe_Wu@meei.harvard.edu. ORCID
  2. Jennifer T O'Malley: Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, Massachusetts 02114.
  3. Victor de Gruttola: Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115.
  4. M Charles Liberman: Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, Massachusetts 02114. ORCID

Abstract

Age-related hearing loss arises from irreversible damage in the inner ear, where sound is transduced into electrical signals. Prior human studies suggested that sensory-cell loss is rarely the cause; correspondingly, animal work has implicated the stria vascularis, the cellular "battery" driving the amplification of sound by hair cell "motors." Here, quantitative microscopic analysis of hair cells, auditory nerve fibers, and strial tissues in 120 human inner ears obtained at autopsy, most of whom had recent audiograms in their medical records, shows that the degree of hearing loss is well predicted from the amount of hair cell loss and that inclusion of strial damage does not improve the prediction. Although many aging ears showed significant strial degeneration throughout the cochlea, our statistical models suggest that, by the time strial tissues are lost, hair cell death is so extensive that the loss of battery is no longer important to pure-tone thresholds and that audiogram slope is not diagnostic for strial degeneration. These data comprise the first quantitative survey of hair cell death in normal-aging human cochleas, and reveal unexpectedly severe hair cell loss in low-frequency cochlear regions, and dramatically greater loss in high-frequency regions than seen in any aging animal model. Comparison of normal-aging ears to an age-matched group with acoustic-overexposure history suggests that a lifetime of acoustic overexposure is to blame. This report upends dogma about the causes of age-related hearing loss. Our analysis of over 120 autopsy specimens shows that inner-ear sensory cell loss can largely explain the audiometric patterns in aging, with minimal contribution from the stria vascularis, the "battery" that powers the inner ear, previously viewed as the major locus of age-related hearing dysfunction. Predicting inner ear damage from the audiogram is critical, now that clinical trials of therapeutics designed to regrow hair cells are underway. Our data also show that hair cell degeneration in aging humans is dramatically worse than that in aging animals, suggesting that the high-frequency hearing losses that define human presbycusis reflect avoidable contributions of chronic ear abuse to which aging animals are not exposed.

Keywords

References

  1. Acta Otolaryngol. 1972 Feb-Mar;73(2):235-48 [PMID: 5015157]
  2. Ann Otol Rhinol Laryngol. 1985 Jan-Feb;94(1 Pt 1):75-80 [PMID: 3970507]
  3. Hear Res. 2013 Aug;302:113-20 [PMID: 23566980]
  4. Acta Otolaryngol Suppl. 1978;358:1-63 [PMID: 281107]
  5. Hear Res. 2018 Nov;369:29-32 [PMID: 29653842]
  6. J Neurosci Res. 2020 Sep;98(9):1685-1697 [PMID: 30950547]
  7. Nature. 2002 Sep 19;419(6904):300-4 [PMID: 12239568]
  8. J Rehabil Res Dev. 2005 Jul-Aug;42(4 Suppl 2):9-24 [PMID: 16470462]
  9. Arch Otolaryngol. 1964 Oct;80:369-82 [PMID: 14198699]
  10. Proc Natl Acad Sci U S A. 2012 May 22;109(21):8224-9 [PMID: 22566614]
  11. Hear Res. 2008 Jul;241(1-2):26-33 [PMID: 18508213]
  12. Otol Neurotol. 2006 Apr;27(3):316-22 [PMID: 16639268]
  13. Laryngoscope. 2006 Sep;116(9 Pt 3 Suppl 112):1-12 [PMID: 16946668]
  14. Hear Res. 1984 Oct;16(1):55-74 [PMID: 6511673]
  15. Hear Res. 2009 Feb;248(1-2):39-47 [PMID: 19111601]
  16. Compr Physiol. 2017 Sep 12;7(4):1197-1227 [PMID: 28915323]
  17. Curr Opin Neurobiol. 2008 Aug;18(4):370-6 [PMID: 18809494]
  18. Hear Res. 1992 Aug;61(1-2):35-46 [PMID: 1326507]
  19. J Assoc Res Otolaryngol. 2013 Oct;14(5):687-701 [PMID: 23740184]
  20. Ann Otol Rhinol Laryngol. 1962 Sep;71:727-43 [PMID: 13974856]
  21. Neuroscience. 2015 Jan 22;284:470-482 [PMID: 25316409]
  22. Ann Otol Rhinol Laryngol. 1993 Jan;102(1 Pt 2):1-16 [PMID: 8420477]
  23. Hear Res. 2011 Jul;277(1-2):4-19 [PMID: 21329750]
  24. Hear Res. 2016 May;335:83-93 [PMID: 26924453]
  25. Hear Res. 1996 May;94(1-2):116-24 [PMID: 8789817]
  26. Laryngoscope. 2020 Feb;130(2):487-495 [PMID: 30963586]
  27. Hear Res. 1991 Jul;54(1):123-34 [PMID: 1917712]
  28. Laryngoscope. 1974 Oct;84(10):1777-821 [PMID: 4138750]
  29. J Neurosci. 2009 Nov 11;29(45):14077-85 [PMID: 19906956]
  30. J Gerontol A Biol Sci Med Sci. 1996 Jan;51(1):B54-9 [PMID: 8548501]
  31. Hear Res. 1990 Sep;48(1-2):79-91 [PMID: 2249962]
  32. Laryngoscope. 1986 Dec;96(12):1391-6 [PMID: 3784745]
  33. Neurobiol Aging. 2018 Feb;62:53-63 [PMID: 29107847]
  34. Otolaryngol Head Neck Surg. 1989 Jan;100(1):30-4 [PMID: 2493614]
  35. J Assoc Res Otolaryngol. 2008 Mar;9(1):1-4 [PMID: 18247091]
  36. Laryngoscope. 1955 Jun;65(6):402-19 [PMID: 14392966]
  37. Laryngoscope. 1988 Jul;98(7):754-9 [PMID: 3386381]
  38. Lab Anim Sci. 1973 Apr;23(2):262-5 [PMID: 4349890]
  39. J Neurosci. 2002 Nov 1;22(21):9643-50 [PMID: 12417690]
  40. J Natl Cancer Inst. 1984 Apr;72(4):929-40 [PMID: 6584668]
  41. J Neurosci Res. 2020 Sep;98(9):1674-1684 [PMID: 31066107]
  42. J Assoc Res Otolaryngol. 2010 Dec;11(4):605-23 [PMID: 20706857]
  43. J Laryngol Otol. 1955 Feb;69(2):75-97 [PMID: 14354340]
  44. Hear Res. 2019 Jun;377:44-52 [PMID: 30903954]
  45. Ann Otol Rhinol Laryngol. 2001 Dec;110(12):1147-53 [PMID: 11768706]
  46. Neuroscience. 2019 May 21;407:8-20 [PMID: 30099118]
  47. J Acoust Soc Am. 1990 Jun;87(6):2592-605 [PMID: 2373794]
  48. Ann Otol Rhinol Laryngol. 2009 Jun;118(6):435-41 [PMID: 19663375]
  49. Adv Exp Med Biol. 1975;53:257-64 [PMID: 1119338]
  50. Science. 1982 Jun 11;216(4551):1239-41 [PMID: 7079757]
  51. World J Otorhinolaryngol Head Neck Surg. 2018 Mar 06;3(4):211-213 [PMID: 29780964]
  52. Gerontology. 2020;66(1):33-39 [PMID: 31117093]

Grants

  1. P50 DC015857/NIDCD NIH HHS
  2. U24 DC013983/NIDCD NIH HHS

MeSH Term

Adolescent
Adult
Aged
Aged, 80 and over
Audiometry
Auditory Pathways
Child
Child, Preschool
Female
Hair Cells, Auditory, Inner
Humans
Infant
Male
Middle Aged
Presbycusis
Stria Vascularis
Young Adult

Word Cloud

Created with Highcharts 10.0.0losshaircellaginghearingstrialinnerearhumandamageearsdegenerationsoundanimalstriavascularis"battery"quantitativeanalysiscellsauditorytissues120autopsyshowsdeathaudiogramdatanormal-agingregionsdramaticallyhigh-frequencyage-relatedsensoryanimalssystemAge-relatedarisesirreversibletransducedelectricalsignalsPriorstudiessuggestedsensory-cellrarelycausecorrespondinglyworkimplicatedcellulardrivingamplification"motors"microscopicnervefibersobtainedrecentaudiogramsmedicalrecordsdegreewellpredictedamountinclusionimprovepredictionAlthoughmanyshowedsignificantthroughoutcochleastatisticalmodelssuggesttimelostextensivebatterylongerimportantpure-tonethresholdsslopediagnosticcomprisefirstsurveycochleasrevealunexpectedlyseverelow-frequencycochleargreaterseenmodelComparisonage-matchedgroupacoustic-overexposurehistorysuggestslifetimeacousticoverexposureblamereportupendsdogmacausesspecimensinner-earcanlargelyexplainaudiometricpatternsminimalcontributionpowerspreviouslyviewedmajorlocusdysfunctionPredictingcriticalnowclinicaltrialstherapeuticsdesignedregrowunderwayalsoshowhumansworsesuggestinglossesdefinepresbycusisreflectavoidablecontributionschronicabuseexposedAge-RelatedHearingLossDominatedDamageInnerEarSensoryCellsCellularBatteryPowersThemdisordersnervousmotor

Similar Articles

Cited By