Body shape diversification along the benthic-pelagic axis in marine fishes.

S T Friedman, S A Price, K A Corn, O Larouche, C M Martinez, P C Wainwright
Author Information
  1. S T Friedman: Department of Evolution and Ecology, University of California Davis, Davis, CA 95616, USA.
  2. S A Price: Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA.
  3. K A Corn: Department of Evolution and Ecology, University of California Davis, Davis, CA 95616, USA.
  4. O Larouche: Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA.
  5. C M Martinez: Department of Evolution and Ecology, University of California Davis, Davis, CA 95616, USA.
  6. P C Wainwright: Department of Evolution and Ecology, University of California Davis, Davis, CA 95616, USA.

Abstract

Colonization of novel habitats can result in marked phenotypic responses to the new environment that include changes in body shape and opportunities for further morphological diversification. Fishes have repeatedly transitioned along the benthic-pelagic axis, with varying degrees of association with the substrate. Previous work focusing on individual lineages shows that these transitions are accompanied by highly predictable changes in body form. Here, we generalize expectations drawn from this literature to study the effects of habitat on body shape diversification across 3344 marine teleost fishes. We compare rates and patterns of evolution in eight linear measurements of body shape among fishes that live in pelagic, demersal and benthic habitats. While average body shape differs between habitats, these differences are subtle compared with the high diversity of shapes found within each habitat. Benthic living increases the rate of body shape evolution and has led to numerous lineages evolving extreme body shapes, including both exceptionally wide bodies and highly elongate, eel-like forms. By contrast, we find that benthic living is associated with the slowest diversification of structures associated with feeding. Though we find that habitat can serve as an impetus for predictable trait changes, we also highlight the diversity of responses in marine teleosts to opportunities presented by major habitats.

Keywords

Associated Data

figshare | 10.6084/m9.figshare.c.5053538

References

  1. Integr Comp Biol. 2010 Dec;50(6):1091-105 [PMID: 21558261]
  2. Syst Biol. 2015 Mar;64(2):340-55 [PMID: 25601943]
  3. BMC Evol Biol. 2013 Dec 17;13:272 [PMID: 24341464]
  4. J Exp Biol. 2017 Feb 15;220(Pt 4):652-666 [PMID: 27913600]
  5. Proc Biol Sci. 2014 Aug 7;281(1788):20140703 [PMID: 24943377]
  6. Curr Biol. 2012 Dec 18;22(24):2362-8 [PMID: 23159601]
  7. Ecol Evol. 2013 Jul;3(7):2262-72 [PMID: 23919168]
  8. Ecol Evol. 2014 Apr;4(7):1127-39 [PMID: 24772288]
  9. Ecol Lett. 2011 May;14(5):462-9 [PMID: 21385297]
  10. Evolution. 2013 Feb;67(2):417-28 [PMID: 23356614]
  11. J Fish Biol. 2009 Aug;75(3):591-617 [PMID: 20738559]
  12. Proc Biol Sci. 2018 Dec 19;285(1893):20182010 [PMID: 30963906]
  13. Evolution. 2012 Aug;66(8):2369-83 [PMID: 22834738]
  14. Dev Genes Evol. 2016 Jun;226(3):113-37 [PMID: 27038023]
  15. Mol Phylogenet Evol. 2018 Apr;121:212-223 [PMID: 29307507]
  16. PLoS One. 2014 Nov 19;9(11):e112732 [PMID: 25409027]
  17. PLoS One. 2010 Mar 08;5(3):e9551 [PMID: 20221400]
  18. J Evol Biol. 2010 May;23(5):1033-49 [PMID: 20345808]
  19. Evolution. 2007 Sep;61(9):2104-26 [PMID: 17915358]
  20. Am Nat. 2010 Jun;175(6):623-39 [PMID: 20412015]
  21. J Fish Biol. 2010 Oct;77(6):1173-208 [PMID: 21039499]
  22. BMC Bioinformatics. 2006 Feb 23;7:88 [PMID: 16504105]
  23. Nature. 2018 Jul;559(7714):392-395 [PMID: 29973726]
  24. J Evol Biol. 2017 Mar;30(3):549-560 [PMID: 27925684]
  25. Evolution. 1999 Jun;53(3):866-873 [PMID: 28565618]
  26. Integr Org Biol. 2020 Feb 20;2(1):obaa004 [PMID: 33791548]
  27. Evolution. 2016 Aug;70(8):1882-95 [PMID: 27345593]
  28. Science. 2010 Jan 8;327(5962):196-8 [PMID: 20056888]
  29. Mol Phylogenet Evol. 2017 Feb;107:382-387 [PMID: 27908740]
  30. J Evol Biol. 2016 May;29(5):965-78 [PMID: 26809907]
  31. Zoology (Jena). 2015 Oct;118(5):312-9 [PMID: 26165693]
  32. Methods Ecol Evol. 2016 Jun;7(6):693-699 [PMID: 27499839]
  33. Biol J Linn Soc Lond. 2010 Nov 1;101(3):595-608 [PMID: 21221422]
  34. Integr Comp Biol. 2019 Sep 1;59(3):716-730 [PMID: 31241147]

MeSH Term

Animals
Aquatic Organisms
Biodiversity
Biological Evolution
Ecosystem
Fishes

Word Cloud

Created with Highcharts 10.0.0bodyshapehabitatsdiversificationchangeshabitatmarinefishescanresponsesopportunitiesalongbenthic-pelagicaxislineageshighlypredictableevolutionlinearbenthicdiversityshapeslivingfindassociatedColonizationnovelresultmarkedphenotypicnewenvironmentincludemorphologicalFishesrepeatedlytransitionedvaryingdegreesassociationsubstratePreviousworkfocusingindividualshowstransitionsaccompaniedformgeneralizeexpectationsdrawnliteraturestudyeffectsacross3344teleostcompareratespatternseightmeasurementsamonglivepelagicdemersalaveragediffersdifferencessubtlecomparedhighfoundwithinBenthicincreasesratelednumerousevolvingextremeincludingexceptionallywidebodieselongateeel-likeformscontrastsloweststructuresfeedingThoughserveimpetustraitalsohighlightteleostspresentedmajorBodyecologicalopportunityfishmorphometricsmacroevolution

Similar Articles

Cited By