Insect mitochondria as targets of freezing-induced injury.

T Štětina, L E Des Marteaux, V Koštál
Author Information
  1. T Štětina: Biology Centre, Czech Academy of Sciences, Institute of Entomology, Branišovská 31, České Budějovice 37005, Czech Republic.
  2. L E Des Marteaux: Biology Centre, Czech Academy of Sciences, Institute of Entomology, Branišovská 31, České Budějovice 37005, Czech Republic.
  3. V Koštál: Biology Centre, Czech Academy of Sciences, Institute of Entomology, Branišovská 31, České Budějovice 37005, Czech Republic.

Abstract

Many insects survive internal freezing, but the great complexity of freezing stress hinders progress in understanding the ultimate nature of freezing-induced injury. Here, we use larvae of the drosophilid fly, to assess the role of mitochondrial responses to freezing stress. Respiration analysis revealed that fat body mitochondria of the freeze-sensitive (non-diapause) phenotype significantly decrease oxygen consumption upon lethal freezing stress, while mitochondria of the freeze-tolerant (diapausing, cold-acclimated) phenotype do not lose respiratory capacity upon the same stress. Using transmission electron microscopy, we show that fat body and hindgut mitochondria swell, and occasionally burst, upon exposure of the freeze-sensitive phenotype to lethal freezing stress. By contrast, mitochondrial swelling is not observed in the freeze-tolerant phenotype exposed to the same stress. We hypothesize that mitochondrial swelling results from permeability transition of the inner mitochondrial membrane and loss of its barrier function, which causes osmotic influx of cytosolic water into the matrix. We therefore suggest that the phenotypic transition to diapause and cold acclimation could be associated with adaptive changes that include the protection of the inner mitochondrial membrane against permeability transition and subsequent mitochondrial swelling. Accumulation of high concentrations of proline and other cryoprotective substances might be a part of such adaptive changes as we have shown that freezing-induced mitochondrial swelling was abolished by feeding the freeze-sensitive phenotype larvae on a proline-augmented diet.

Keywords

Associated Data

figshare | 10.6084/m9.figshare.c.5053544

References

  1. Annu Rev Physiol. 1992;54:619-37 [PMID: 1562185]
  2. Cardiovasc Res. 2004 Feb 15;61(3):372-85 [PMID: 14962470]
  3. Insect Mol Biol. 2003 Jun;12(3):281-9 [PMID: 12752662]
  4. Crit Rev Biochem Mol Biol. 1990;25(4):281-305 [PMID: 2225910]
  5. Cryobiology. 2010 Feb;60(1):91-9 [PMID: 19616532]
  6. Cryobiology. 1972 Apr;9(2):112-22 [PMID: 5035146]
  7. Biochem J. 2000 Jun 1;348 Pt 2:343-50 [PMID: 10816428]
  8. Cell Calcium. 2018 Mar;70:56-63 [PMID: 28522037]
  9. Proc Natl Acad Sci U S A. 2017 Aug 8;114(32):8532-8537 [PMID: 28720705]
  10. J Physiol. 2012 Jul 15;590(14):3349-60 [PMID: 22586215]
  11. Sci Rep. 2018 Mar 13;8(1):4414 [PMID: 29535362]
  12. Biol Rev Camb Philos Soc. 2018 Nov;93(4):1891-1914 [PMID: 29749114]
  13. Cryobiology. 1987 Aug;24(4):324-31 [PMID: 3621976]
  14. Exp Cell Res. 1971 Jun;66(2):378-84 [PMID: 4326613]
  15. Am J Physiol Regul Integr Comp Physiol. 2005 Jul;289(1):R68-76 [PMID: 15718386]
  16. J Exp Biol. 2018 Oct 31;221(Pt 21): [PMID: 30190314]
  17. J Insect Physiol. 1997 Feb 19;43(1):39-45 [PMID: 12769928]
  18. Cryobiology. 1988 Jun;25(3):244-55 [PMID: 3396389]
  19. Biochim Biophys Acta. 1990 Oct 19;1028(3):281-8 [PMID: 1699601]
  20. Sci Rep. 2017 Mar 30;7:45474 [PMID: 28358017]
  21. Dev Cell. 2007 May;12(5):793-806 [PMID: 17488629]
  22. Sci Rep. 2016 Aug 10;6:30610 [PMID: 27506553]
  23. Genes Dev. 2009 Nov 1;23(21):2461-77 [PMID: 19884253]
  24. J Exp Biol. 2019 Feb 22;222(Pt 4): [PMID: 30796157]
  25. Physiol Rev. 1988 Jan;68(1):27-84 [PMID: 3275942]
  26. Proc Natl Acad Sci U S A. 2011 Aug 9;108(32):13041-6 [PMID: 21788482]
  27. Cryobiology. 1985 Oct;22(5):446-56 [PMID: 2932302]
  28. Anat Rec (Hoboken). 2012 Oct;295(10):1647-59 [PMID: 22907871]
  29. J Mol Cell Cardiol. 2009 Jun;46(6):821-31 [PMID: 19265700]
  30. Mitochondrion. 2014 Nov;19 Pt B:289-94 [PMID: 24566372]
  31. Am J Physiol Regul Integr Comp Physiol. 2016 Aug 1;311(2):R325-36 [PMID: 27225952]
  32. Arch Biochem Biophys. 1979 Jul;195(2):453-9 [PMID: 383019]
  33. Ann Bot. 2002 Oct;90(4):509-16 [PMID: 12324275]
  34. J Exp Biol. 2018 Apr 6;221(Pt 7): [PMID: 29496781]
  35. Arch Biochem Biophys. 1986 Feb 15;245(1):134-43 [PMID: 3947095]
  36. Biophys Chem. 2016 Jan;208:4-8 [PMID: 26026885]
  37. J Comp Physiol B. 1989;158(6):661-71 [PMID: 2715455]
  38. Q Rev Biophys. 1975 May;8(2):185-235 [PMID: 1103214]
  39. Proc Biol Sci. 2019 Oct 23;286(1913):20192019 [PMID: 31640516]
  40. Mitochondrion. 2016 Jan;26:33-42 [PMID: 26611999]
  41. Cell. 2012 Mar 16;148(6):1145-59 [PMID: 22424226]
  42. FEBS Lett. 2004 Apr 9;563(1-3):161-4 [PMID: 15063742]
  43. Science. 2004 Jul 30;305(5684):626-9 [PMID: 15286356]
  44. FEBS Lett. 2002 Feb 13;512(1-3):1-7 [PMID: 11852041]
  45. Cryobiology. 1985 Aug;22(4):367-77 [PMID: 4028782]
  46. J Biol Chem. 2003 Jul 18;278(29):26458-65 [PMID: 12702728]
  47. Insect Biochem Mol Biol. 2008 Mar;38(3):367-73 [PMID: 18252250]

MeSH Term

Acclimatization
Animals
Drosophilidae
Freezing
Insecta
Larva
Mitochondria

Word Cloud

Created with Highcharts 10.0.0mitochondrialstressfreezingphenotypemitochondriaswellingfreezing-inducedfreeze-sensitiveupontransitioninsectsinjurylarvaefatbodylethalfreeze-tolerantpermeabilityinnermembraneadaptivechangesManysurviveinternalgreatcomplexityhindersprogressunderstandingultimatenatureusedrosophilidflyassessroleresponsesRespirationanalysisrevealednon-diapausesignificantlydecreaseoxygenconsumptiondiapausingcold-acclimatedloserespiratorycapacityUsingtransmissionelectronmicroscopyshowhindgutswelloccasionallyburstexposurecontrastobservedexposedhypothesizeresultslossbarrierfunctioncausesosmoticinfluxcytosolicwatermatrixthereforesuggestphenotypicdiapausecoldacclimationassociatedincludeprotectionsubsequentAccumulationhighconcentrationsprolinecryoprotectivesubstancesmightpartshownabolishedfeedingproline-augmenteddietInsecttargetsfreezetolerancemorphology

Similar Articles

Cited By