Mutualistic networks, which describe the ecological interactions between multiple types of species such as plants and pollinators, play a paramount role in the generation of Earth's biodiversity. The resilience of a mutualistic network denotes its ability to retain basic functionality when errors and failures threaten the persistence of the community. Under the disturbances of mass extinctions and human-induced disasters, it is crucial to understand how mutualistic networks respond to changes, which enables the system to increase resilience and tolerate further damages. Despite recent advances in the modelling of the structure-based adaptation, we lack mathematical and computational models to describe and capture the co-adaptation between the structure and dynamics of mutualistic networks. In this paper, we incorporate dynamic features into the adaptation of structure and propose a co-adaptation model that drastically enhances the resilience of non-adaptive and structure-based adaptation models. Surprisingly, the reason for the enhancement is that the co-adaptation mechanism simultaneously increases the heterogeneity of the mutualistic network significantly without changing its connectance. Owing to the broad applications of mutualistic networks, our findings offer new ways to design mechanisms that enhance the resilience of many other systems, such as smart infrastructures and social-economical systems.