Co-adaptation enhances the resilience of mutualistic networks.

Huixin Zhang, Xueming Liu, Qi Wang, Weidong Zhang, Jianxi Gao
Author Information
  1. Huixin Zhang: Automation Department, Shanghai Jiao Tong University, Shanghai 200240, Shanghai, People's Republic of China.
  2. Xueming Liu: Key Laboratory of Imaging Processing and Intelligence Control, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China.
  3. Qi Wang: Department of Civil and Environmental Engineering, Northeastern University, Boston, MA 02115, USA.
  4. Weidong Zhang: Automation Department, Shanghai Jiao Tong University, Shanghai 200240, Shanghai, People's Republic of China.
  5. Jianxi Gao: Department of Computer Science and Network Science and Technology Center, Troy, NY 12180, USA.

Abstract

Mutualistic networks, which describe the ecological interactions between multiple types of species such as plants and pollinators, play a paramount role in the generation of Earth's biodiversity. The resilience of a mutualistic network denotes its ability to retain basic functionality when errors and failures threaten the persistence of the community. Under the disturbances of mass extinctions and human-induced disasters, it is crucial to understand how mutualistic networks respond to changes, which enables the system to increase resilience and tolerate further damages. Despite recent advances in the modelling of the structure-based adaptation, we lack mathematical and computational models to describe and capture the co-adaptation between the structure and dynamics of mutualistic networks. In this paper, we incorporate dynamic features into the adaptation of structure and propose a co-adaptation model that drastically enhances the resilience of non-adaptive and structure-based adaptation models. Surprisingly, the reason for the enhancement is that the co-adaptation mechanism simultaneously increases the heterogeneity of the mutualistic network significantly without changing its connectance. Owing to the broad applications of mutualistic networks, our findings offer new ways to design mechanisms that enhance the resilience of many other systems, such as smart infrastructures and social-economical systems.

Keywords

References

  1. Phys Rev Lett. 2017 Jun 9;118(23):238301 [PMID: 28644658]
  2. J R Soc Interface. 2008 Mar 6;5(20):259-71 [PMID: 17971320]
  3. J Theor Biol. 2017 Jun 7;422:72-83 [PMID: 28419864]
  4. Science. 2018 Mar 2;359(6379):986-987 [PMID: 29496864]
  5. Phys Rev E. 2020 Feb;101(2-1):022304 [PMID: 32168562]
  6. Nature. 2013 Aug 22;500(7463):449-52 [PMID: 23969462]
  7. Am Nat. 2011 Jan;177(1):110-8 [PMID: 21117967]
  8. Phys Rev Lett. 2011 Dec 2;107(23):234103 [PMID: 22182093]
  9. Proc Biol Sci. 2011 Oct 22;278(1721):3050-9 [PMID: 21389026]
  10. Proc Natl Acad Sci U S A. 2016 Jan 19;113(3):793-7 [PMID: 26711984]
  11. J R Soc Interface. 2007 Oct 22;4(16):879-91 [PMID: 17640863]
  12. Nature. 2010 Apr 15;464(7291):1025-8 [PMID: 20393559]
  13. Science. 2003 Feb 28;299(5611):1388-91 [PMID: 12610303]
  14. Nature. 2017 Oct 26;550(7677):511-514 [PMID: 29045396]
  15. Science. 2014 Jul 25;345(6195):1253497 [PMID: 25061214]
  16. Nature. 2015 Nov 12;527(7577):173-4 [PMID: 26536113]
  17. Nature. 2019 Sep;573(7773):261-265 [PMID: 31435010]
  18. Science. 2004 Sep 10;305(5690):1632-4 [PMID: 15361627]
  19. Phys Rev E. 2018 Apr;97(4-1):042301 [PMID: 29758636]
  20. Science. 2010 Aug 13;329(5993):765-6 [PMID: 20705836]
  21. Nat Commun. 2015 Sep 24;6:8412 [PMID: 26400367]
  22. Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Aug;80(2 Pt 2):026129 [PMID: 19792222]
  23. Nature. 2016 Feb 18;530(7590):307-12 [PMID: 26887493]
  24. Philos Trans R Soc Lond B Biol Sci. 2009 Jun 27;364(1524):1711-23 [PMID: 19451122]
  25. Sci Rep. 2017 Jul 31;7(1):6915 [PMID: 28761144]
  26. Nat Phys. 2013;9: [PMID: 24319492]
  27. Nature. 2009 Apr 23;458(7241):1018-20 [PMID: 19396144]
  28. Science. 2009 Jul 24;325(5939):416-9 [PMID: 19628856]
  29. Phys Rev Lett. 2014 Mar 21;112(11):114102 [PMID: 24702374]
  30. Science. 2010 Aug 13;329(5993):853-6 [PMID: 20705861]
  31. Am Nat. 2002 Mar;159(3):231-44 [PMID: 18707376]
  32. Phys Rev Lett. 2006 May 26;96(20):208701 [PMID: 16803215]
  33. New Phytol. 2006;172(3):412-28 [PMID: 17083673]
  34. Phys Rep. 2014 Nov 1;544(1):1-122 [PMID: 32834429]
  35. Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Jun;91(6):062913 [PMID: 26172778]
  36. Nat Ecol Evol. 2019 Mar;3(3):355-362 [PMID: 30778190]
  37. Science. 2011 Feb 25;331(6020):1068-71 [PMID: 21292938]
  38. Nat Ecol Evol. 2019 Mar;3(3):345-354 [PMID: 30742106]
  39. Nature. 2006 Jul 20;442(7100):259-64 [PMID: 16855581]
  40. Nature. 2007 Aug 23;448(7156):925-8 [PMID: 17713534]
  41. Ecol Lett. 2015 Feb;18(2):144-52 [PMID: 25431016]

MeSH Term

Adaptation, Physiological
Biodiversity
Ecosystem
Humans
Models, Biological
Plants
Symbiosis

Word Cloud

Created with Highcharts 10.0.0resiliencemutualisticnetworksadaptationnetworkco-adaptationstructuredescribestructure-basedmodelsdynamicsenhancesheterogeneitysystemsMutualisticecologicalinteractionsmultipletypesspeciesplantspollinatorsplayparamountrolegenerationEarth'sbiodiversitydenotesabilityretainbasicfunctionalityerrorsfailuresthreatenpersistencecommunitydisturbancesmassextinctionshuman-induceddisasterscrucialunderstandrespondchangesenablessystemincreasetoleratedamagesDespiterecentadvancesmodellinglackmathematicalcomputationalcapturepaperincorporatedynamicfeaturesproposemodeldrasticallynon-adaptiveSurprisinglyreasonenhancementmechanismsimultaneouslyincreasessignificantlywithoutchangingconnectanceOwingbroadapplicationsfindingsoffernewwaysdesignmechanismsenhancemanysmartinfrastructuressocial-economicalCo-adaptation

Similar Articles

Cited By