Comparative genomic insights into - a commonly misidentified -like organism.

Scott Van Nguyen, Dechamma Mundanda Muthappa, Athmanya K Eshwar, James F Buckley, Brenda P Murphy, Roger Stephan, Angelika Lehner, Séamus Fanning
Author Information
  1. Scott Van Nguyen: UCD-Centre for Food Safety, School of Public Health, Physiotherapy & Sports Science, University College Dublin, Belfield, Dublin D04 N2E5, Ireland.
  2. Dechamma Mundanda Muthappa: UCD-Centre for Food Safety, School of Public Health, Physiotherapy & Sports Science, University College Dublin, Belfield, Dublin D04 N2E5, Ireland.
  3. Athmanya K Eshwar: Institute for Food Safety and Hygiene, University of Zurich, Zurich, Switzerland.
  4. James F Buckley: Veterinary Food Safety Laboratory, Cork County Council, Inniscarra, Co. Cork and Department of Microbiology, National University of Ireland, Cork, College Road, Cork, Ireland.
  5. Brenda P Murphy: Veterinary Food Safety Laboratory, Cork County Council, Inniscarra, Co. Cork and Department of Microbiology, National University of Ireland, Cork, College Road, Cork, Ireland.
  6. Roger Stephan: Institute for Food Safety and Hygiene, University of Zurich, Zurich, Switzerland.
  7. Angelika Lehner: Institute for Food Safety and Hygiene, University of Zurich, Zurich, Switzerland.
  8. Séamus Fanning: UCD-Centre for Food Safety, School of Public Health, Physiotherapy & Sports Science, University College Dublin, Belfield, Dublin D04 N2E5, Ireland.

Abstract

Food-associated outbreaks linked to enteropathogenic are of concern to public health. Pigs and their meat are recognized risk factors for transmission of . This study aimed to describe the comparative genomics of along with a number of misclassified isolates, now constituting the recently described . The latter was originally cultured from an environmental sample taken at a pig slaughterhouse. Unique features were identified in the genome of including a novel integrative conjugative element (ICE), denoted as ICE contained within a 255 kbp region of plasticity. In addition, a zebrafish embryo infection model was adapted and applied to assess the virulence potential among isolates including .

Keywords

References

  1. Genome Biol Evol. 2016 Dec 1;8(12):3806-3814 [PMID: 28173076]
  2. Bioinformatics. 2015 Nov 15;31(22):3691-3 [PMID: 26198102]
  3. J Bacteriol. 2003 Dec;185(24):7153-9 [PMID: 14645275]
  4. Genome Announc. 2014 Dec 18;2(6): [PMID: 25523782]
  5. Nucleic Acids Res. 2015 Jan;43(Database issue):D298-9 [PMID: 25378308]
  6. Proc Natl Acad Sci U S A. 1999 May 25;96(11):6456-61 [PMID: 10339609]
  7. J Clin Microbiol. 2015 Jan;53(1):35-42 [PMID: 25339391]
  8. J Clin Microbiol. 2011 Apr;49(4):1251-9 [PMID: 21325549]
  9. Mol Microbiol. 2004 Dec;54(5):1364-78 [PMID: 15554975]
  10. Front Cell Infect Microbiol. 2017 Oct 17;7:448 [PMID: 29090192]
  11. Mol Microbiol. 1999 Apr;32(2):403-14 [PMID: 10231495]
  12. Metallomics. 2015 Jun;7(6):965-78 [PMID: 25891079]
  13. Microb Pathog. 2017 Mar;104:72-77 [PMID: 28062290]
  14. Microbiology (Reading). 2016 Aug;162(8):1379-1387 [PMID: 27221796]
  15. Arch Microbiol. 2016 Sep;198(7):673-87 [PMID: 27129539]
  16. PLoS One. 2016 Jun 29;11(6):e0158428 [PMID: 27355472]
  17. J Sci Food Agric. 2018 Jan;98(1):87-95 [PMID: 28542807]
  18. Foodborne Pathog Dis. 2012 Mar;9(3):179-89 [PMID: 22217012]
  19. Microb Pathog. 1997 Oct;23(4):189-200 [PMID: 9344780]
  20. Annu Rev Genet. 2015;49:577-601 [PMID: 26473380]
  21. Trends Microbiol. 2010 Dec;18(12):531-7 [PMID: 20961764]
  22. BMC Microbiol. 2011 Apr 28;11:85 [PMID: 21527009]
  23. J Appl Microbiol. 2000 Mar;88(3):521-30 [PMID: 10747233]
  24. Mol Genet Genomics. 2015 Dec;290(6):2075-88 [PMID: 25982743]
  25. Microbes Infect. 1999 Apr;1(4):323-33 [PMID: 10602666]
  26. J Antimicrob Chemother. 2012 Nov;67(11):2640-4 [PMID: 22782487]
  27. Int J Med Microbiol. 2011 Nov;301(7):556-61 [PMID: 21798805]
  28. Innate Immun. 2009 Apr;15(2):67-80 [PMID: 19318417]
  29. J Bacteriol. 1999 Oct;181(20):6387-95 [PMID: 10515929]
  30. Vector Borne Zoonotic Dis. 2017 May;17(5):303-311 [PMID: 28332937]
  31. Eur J Clin Microbiol Infect Dis. 2009 Jul;28(7):757-65 [PMID: 19219471]
  32. Infect Immun. 2003 Apr;71(4):1872-9 [PMID: 12654803]
  33. BMC Infect Dis. 2010 May 20;10:122 [PMID: 20487529]
  34. Front Cell Infect Microbiol. 2018 Jul 31;8:260 [PMID: 30109217]
  35. Microbiology (Reading). 2007 May;153(Pt 5):1339-1349 [PMID: 17464048]
  36. Eur J Clin Microbiol Infect Dis. 2015 Apr;34(4):641-50 [PMID: 25410144]
  37. Dev Dyn. 1995 Jul;203(3):253-310 [PMID: 8589427]
  38. Int J Syst Evol Microbiol. 2019 Jul;69(7):2023-2027 [PMID: 31066656]
  39. Eur J Clin Microbiol Infect Dis. 2013 Jul;32(7):869-75 [PMID: 23354676]
  40. Int J Med Microbiol. 2013 Jan;303(1):16-24 [PMID: 23276548]
  41. Biometals. 2010 Apr;23(2):275-94 [PMID: 20049509]
  42. Ann Agric Environ Med. 2015;22(3):397-402 [PMID: 26403101]
  43. Case Rep Infect Dis. 2018 Jul 11;2018:7520527 [PMID: 30123589]
  44. Proc Natl Acad Sci U S A. 2014 May 6;111(18):6768-73 [PMID: 24753568]
  45. Nucleic Acids Res. 2016 Jul 8;44(W1):W16-21 [PMID: 27141966]
  46. Front Cell Infect Microbiol. 2018 Nov 14;8:392 [PMID: 30488025]
  47. FEMS Microbiol Lett. 2007 Jan;266(2):177-83 [PMID: 17233728]
  48. Appl Environ Microbiol. 2012 Sep;78(17):6327-36 [PMID: 22773631]
  49. Nat Rev Microbiol. 2016 Mar;14(3):177-90 [PMID: 26876035]
  50. PLoS Genet. 2006 Dec 15;2(12):e206 [PMID: 17173484]
  51. EFSA J. 2019 Dec 11;17(12):e05926 [PMID: 32626211]
  52. Epidemiol Infect. 2014 Dec;142(12):2542-7 [PMID: 24512817]
  53. Genome Announc. 2013 Dec 12;1(6): [PMID: 24336377]
  54. Infect Immun. 1998 Aug;66(8):3941-51 [PMID: 9673284]
  55. Mol Microbiol. 1992 May;6(10):1309-21 [PMID: 1640832]
  56. Microb Genom. 2019 Oct;5(10): [PMID: 31580794]
  57. Antimicrob Agents Chemother. 2010 Sep;54(9):4000-2 [PMID: 20547799]
  58. Microorganisms. 2020 Mar 02;8(3): [PMID: 32131463]
  59. Mol Microbiol. 1991 May;5(5):1023-34 [PMID: 1956283]
  60. J Med Microbiol. 2020 Mar;69(3):419-426 [PMID: 31999240]
  61. Nucleic Acids Res. 2016 Jan 4;44(D1):D694-7 [PMID: 26578559]
  62. Bioinformatics. 2017 Sep 15;33(18):2938-2940 [PMID: 28645171]
  63. Infect Immun. 2012 Nov;80(11):3880-91 [PMID: 22927049]
  64. Foodborne Pathog Dis. 2016 May;13(5):275-9 [PMID: 26982547]
  65. Int J Med Microbiol. 2000 Mar;290(1):61-4 [PMID: 11043982]
  66. Genome Announc. 2017 Aug 10;5(32): [PMID: 28798182]
  67. FEMS Microbiol Rev. 2015 Nov;39(6):968-84 [PMID: 26109597]
  68. J Med Microbiol. 2019 Apr;68(4):538-548 [PMID: 30888316]
  69. Nucleic Acids Res. 2019 Jan 8;47(D1):D195-D202 [PMID: 30380090]
  70. Int J Syst Evol Microbiol. 2020 Apr;70(4):2382-2387 [PMID: 32160143]
  71. Bioinformatics. 2014 Jul 15;30(14):2068-9 [PMID: 24642063]

MeSH Term

Animals
Conjugation, Genetic
Diagnosis, Differential
Disease Models, Animal
Embryo, Nonmammalian
Food Microbiology
Genomics
Phylogeny
Swine
Virulence Factors
Yersinia
Yersinia Infections
Yersinia enterocolitica
Zebrafish

Chemicals

Virulence Factors

Word Cloud

Created with Highcharts 10.0.0comparativegenomicsisolatesincludingICEzebrafishembryoYersiniaFood-associatedoutbreakslinkedenteropathogenicconcernpublichealthPigsmeatrecognizedriskfactorstransmissionstudyaimeddescribealongnumbermisclassifiednowconstitutingrecentlydescribedlatteroriginallyculturedenvironmentalsampletakenpigslaughterhouseUniquefeaturesidentifiedgenomenovelintegrativeconjugativeelementdenotedcontainedwithin255kbpregionplasticityadditioninfectionmodeladaptedappliedassessvirulencepotentialamongComparativegenomicinsights-commonlymisidentified-likeorganismenterocoliticahibernica

Similar Articles

Cited By