Signaling models for dopamine-dependent temporal contiguity in striatal synaptic plasticity.

Hidetoshi Urakubo, Sho Yagishita, Haruo Kasai, Shin Ishii
Author Information
  1. Hidetoshi Urakubo: Integrated Systems Biology Laboratory, Department of Systems Science, Graduate School of Informatics, Kyoto University, Sakyo-ku, Kyoto, Japan. ORCID
  2. Sho Yagishita: Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, Japan. ORCID
  3. Haruo Kasai: Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, Japan.
  4. Shin Ishii: Integrated Systems Biology Laboratory, Department of Systems Science, Graduate School of Informatics, Kyoto University, Sakyo-ku, Kyoto, Japan.

Abstract

Animals remember temporal links between their actions and subsequent rewards. We previously discovered a synaptic mechanism underlying such reward learning in D1 receptor (D1R)-expressing spiny projection neurons (D1 SPN) of the striatum. Dopamine (DA) bursts promote dendritic spine enlargement in a time window of only a few seconds after paired pre- and post-synaptic spiking (pre-post pairing), which is termed as reinforcement plasticity (RP). The previous study has also identified underlying signaling pathways; however, it still remains unclear how the signaling dynamics results in RP. In the present study, we first developed a computational model of signaling dynamics of D1 SPNs. The D1 RP model successfully reproduced experimentally observed protein kinase A (PKA) activity, including its critical time window. In this model, adenylate cyclase type 1 (AC1) in the spines/thin dendrites played a pivotal role as a coincidence detector against pre-post pairing and DA burst. In particular, pre-post pairing (Ca2+ signal) stimulated AC1 with a delay, and the Ca2+-stimulated AC1 was activated by the DA burst for the asymmetric time window. Moreover, the smallness of the spines/thin dendrites is crucial to the short time window for the PKA activity. We then developed a RP model for D2 SPNs, which also predicted the critical time window for RP that depended on the timing of pre-post pairing and phasic DA dip. AC1 worked for the coincidence detector in the D2 RP model as well. We further simulated the signaling pathway leading to Ca2+/calmodulin-dependent protein kinase II (CaMKII) activation and clarified the role of the downstream molecules of AC1 as the integrators that turn transient input signals into persistent spine enlargement. Finally, we discuss how such timing windows guide animals' reward learning.

References

  1. J Neurochem. 1998 Sep;71(3):1298-306 [PMID: 9721756]
  2. J Biol Chem. 1994 Oct 14;269(41):25400-5 [PMID: 7929237]
  3. Nat Neurosci. 2012 Jun;15(6):816-8 [PMID: 22544310]
  4. Neuroimage. 2015 Apr 1;109:95-101 [PMID: 25562824]
  5. Neuron. 2015 Nov 4;88(3):528-38 [PMID: 26593091]
  6. J Neurosci. 2008 Mar 26;28(13):3310-23 [PMID: 18367598]
  7. Nat Rev Neurosci. 2012 Feb 15;13(3):169-82 [PMID: 22334212]
  8. Mol Pharmacol. 2000 Oct;58(4):771-7 [PMID: 10999947]
  9. J Physiol. 2010 Aug 15;588(Pt 16):3045-62 [PMID: 20603333]
  10. Front Cell Neurosci. 2013 Nov 18;7:211 [PMID: 24302895]
  11. J Biol Chem. 2009 Feb 13;284(7):4451-63 [PMID: 19029295]
  12. Neuron. 2014 Oct 1;84(1):164-176 [PMID: 25242218]
  13. Brain Res. 1985 Dec 16;359(1-2):113-9 [PMID: 4075139]
  14. Neuroscience. 1989;30(3):767-77 [PMID: 2528080]
  15. Brain Struct Funct. 2008 Sep;213(1-2):17-27 [PMID: 18256852]
  16. J Pharmacol Methods. 1989 Nov;22(3):141-56 [PMID: 2586111]
  17. Elife. 2015 Oct 30;4: [PMID: 26516682]
  18. J Neurosci. 2013 Jun 19;33(25):10209-20 [PMID: 23785137]
  19. Sci Transl Med. 2011 Jan 12;3(65):65ra3 [PMID: 21228397]
  20. Elife. 2015 Nov 27;4: [PMID: 26613416]
  21. Proc Natl Acad Sci U S A. 2015 Jul 7;112(27):E3609-18 [PMID: 26100888]
  22. J Neurosci. 2002 Sep 15;22(18):7931-40 [PMID: 12223546]
  23. Biochem J. 2007 Sep 15;406(3):383-8 [PMID: 17593019]
  24. Prog Neurobiol. 1999 Nov;59(4):355-96 [PMID: 10501634]
  25. Nature. 2012 Jan 18;482(7383):85-8 [PMID: 22258508]
  26. Physiol Rev. 2015 Jul;95(3):853-951 [PMID: 26109341]
  27. J Neurochem. 1989 May;52(5):1655-8 [PMID: 2709017]
  28. Physiology (Bethesda). 2004 Oct;19:271-6 [PMID: 15381755]
  29. Nature. 2006 Mar 30;440(7084):680-3 [PMID: 16474382]
  30. Science. 1999 Jan 15;283(5400):381-7 [PMID: 9888852]
  31. Curr Opin Neurobiol. 2019 Feb;54:104-112 [PMID: 30321866]
  32. Nat Commun. 2015 Feb 18;6:6319 [PMID: 25692798]
  33. Nat Neurosci. 2008 Aug;11(8):932-9 [PMID: 18622401]
  34. Brain Res Mol Brain Res. 1992 Jul;14(3):186-95 [PMID: 1279342]
  35. Front Comput Neurosci. 2013 Sep 13;7:119 [PMID: 24062681]
  36. Biochem Pharmacol. 2012 Jan 15;83(2):193-8 [PMID: 21945484]
  37. PLoS Comput Biol. 2010 Feb 12;6(2):e1000670 [PMID: 20169176]
  38. Eur J Neurosci. 2019 Mar;49(5):726-736 [PMID: 29603470]
  39. Annu Rev Neurosci. 2007;30:259-88 [PMID: 17600522]
  40. J Neurosci. 2015 Oct 14;35(41):14017-30 [PMID: 26468202]
  41. Front Neurosci. 2018 Mar 27;12:182 [PMID: 29636659]
  42. Neuropsychopharmacology. 2010 Jan;35(1):27-47 [PMID: 19675534]
  43. Am J Public Health. 1990 Jan;80(1):25-8 [PMID: 2293798]
  44. Trends Neurosci. 1988 Apr;11(4):128-35 [PMID: 2469180]
  45. J Cogn Neurosci. 2005 Jan;17(1):51-72 [PMID: 15701239]
  46. J Comp Neurol. 2006 Jun 10;496(5):684-97 [PMID: 16615126]
  47. Science. 2014 Sep 26;345(6204):1616-20 [PMID: 25258080]
  48. J Biol Chem. 1994 Feb 25;269(8):6093-100 [PMID: 8119955]
  49. Nat Neurosci. 2020 Feb;23(2):209-216 [PMID: 31932769]
  50. PLoS Comput Biol. 2006 Sep 8;2(9):e119 [PMID: 16965177]
  51. Eur J Neurosci. 2019 Mar;49(6):768-783 [PMID: 29602186]
  52. Trends Pharmacol Sci. 2004 Apr;25(4):210-8 [PMID: 15063085]
  53. J Biol Chem. 1998 Oct 16;273(42):27703-7 [PMID: 9765307]
  54. PLoS One. 2012;7(3):e32885 [PMID: 22493657]
  55. Mol Pharmacol. 1999 Oct;56(4):675-83 [PMID: 10496949]
  56. Prog Neurobiol. 1994 Oct;44(2):163-96 [PMID: 7831476]
  57. Trends Neurosci. 2007 Feb;30(2):62-9 [PMID: 17173981]
  58. Proc Natl Acad Sci U S A. 2016 Apr 12;113(15):4206-11 [PMID: 27035941]
  59. Nature. 2020 Mar;579(7800):555-560 [PMID: 32214250]
  60. Front Neural Circuits. 2018 Jul 31;12:53 [PMID: 30108488]
  61. Neuron. 2004 Oct 28;44(3):483-93 [PMID: 15504328]
  62. Nature. 1993 Feb 11;361(6412):536-8 [PMID: 8429907]
  63. Pharmacol Ther. 2005 Jun;106(3):405-21 [PMID: 15922020]
  64. Neurochem Int. 2019 Jan;122:8-18 [PMID: 30336179]
  65. Front Neurosci. 2010 May 15;4:6 [PMID: 21221409]
  66. Science. 2008 Aug 8;321(5890):848-51 [PMID: 18687967]
  67. PLoS Comput Biol. 2006 Dec 22;2(12):e176 [PMID: 17194217]
  68. J Neurosci. 2009 Sep 30;29(39):12115-24 [PMID: 19793969]
  69. J Neurosci Methods. 2007 Aug 15;164(1):27-42 [PMID: 17498808]
  70. J Neurosci. 2020 Apr 1;40(14):2868-2881 [PMID: 32071139]
  71. Nat Commun. 2017 Aug 24;8(1):334 [PMID: 28839128]
  72. Science. 2018 Jun 29;360(6396): [PMID: 29853555]
  73. J Physiol. 2013 Jul 1;591(13):3197-214 [PMID: 23551948]
  74. Science. 1997 Mar 14;275(5306):1593-9 [PMID: 9054347]
  75. Proc Natl Acad Sci U S A. 2014 Apr 29;111(17):6455-60 [PMID: 24737889]
  76. Annu Rev Neurosci. 2008;31:25-46 [PMID: 18275283]
  77. Neuron. 2018 Sep 19;99(6):1302-1314.e5 [PMID: 30146299]
  78. PLoS Comput Biol. 2016 Sep 01;12(9):e1005080 [PMID: 27584878]
  79. Trends Neurosci. 2012 Feb;35(2):135-43 [PMID: 22222350]
  80. Exp Neurol. 2013 Aug;246:72-83 [PMID: 22285449]
  81. J Physiol. 2017 Dec 15;595(24):7451-7475 [PMID: 28782235]
  82. Prog Neurobiol. 2007 Dec;83(5):277-92 [PMID: 17646043]

MeSH Term

Animals
Calcium Signaling
Calcium-Calmodulin-Dependent Protein Kinase Type 2
Computer Simulation
Corpus Striatum
Cyclic AMP-Dependent Protein Kinases
Dendrites
Dendritic Spines
Dopamine
Kinetics
Learning
Mice
Neuronal Plasticity
Neurons
Receptors, Dopamine D2
Reward

Chemicals

Receptors, Dopamine D2
Cyclic AMP-Dependent Protein Kinases
Calcium-Calmodulin-Dependent Protein Kinase Type 2
Dopamine

Word Cloud

Created with Highcharts 10.0.0RPtimewindowmodelAC1D1DApre-postpairingsignalingtemporalsynapticunderlyingrewardlearningspineenlargementplasticitystudyalsodynamicsdevelopedSPNsproteinkinasePKAactivitycriticalspines/thindendritesrolecoincidencedetectorburstD2timingAnimalsrememberlinksactionssubsequentrewardspreviouslydiscoveredmechanismreceptorD1R-expressingspinyprojectionneuronsSPNstriatumDopamineburstspromotedendriticsecondspairedpre-post-synapticspikingtermedreinforcementpreviousidentifiedpathwayshoweverstillremainsunclearresultspresentfirstcomputationalsuccessfullyreproducedexperimentallyobservedincludingadenylatecyclasetype1playedpivotalparticularCa2+signalstimulateddelayCa2+-stimulatedactivatedasymmetricMoreoversmallnesscrucialshortpredicteddependedphasicdipworkedwellsimulatedpathwayleadingCa2+/calmodulin-dependentIICaMKIIactivationclarifieddownstreammoleculesintegratorsturntransientinputsignalspersistentFinallydiscusswindowsguideanimals'Signalingmodelsdopamine-dependentcontiguitystriatal

Similar Articles

Cited By