Hollow Fiber Membranes of PCL and PCL/Graphene as Scaffolds with Potential to Develop In Vitro Blood-Brain Barrier Models.

Marián Mantecón-Oria, Nazely Diban, Maria T Berciano, Maria J Rivero, Oana David, Miguel Lafarga, Olga Tapia, Ane Urtiaga
Author Information
  1. Marián Mantecón-Oria: Department of Chemical and Biomolecular Engineering, ETSIIyT, University of Cantabria, Avda. Los Castros s/n, 39005 Santander, Spain.
  2. Nazely Diban: Department of Chemical and Biomolecular Engineering, ETSIIyT, University of Cantabria, Avda. Los Castros s/n, 39005 Santander, Spain. ORCID
  3. Maria T Berciano: Instituto de Investigación Marqués de Valdecilla (IDIVAL), Cardenal H. Oria s/n, 39011 Santander, Spain.
  4. Maria J Rivero: Department of Chemical and Biomolecular Engineering, ETSIIyT, University of Cantabria, Avda. Los Castros s/n, 39005 Santander, Spain. ORCID
  5. Oana David: TECNALIA, Basque Research and Technology Alliance (BRTA), Mikeletegi Pasealekua 2, 20009 San Sebastián, Spain. ORCID
  6. Miguel Lafarga: Instituto de Investigación Marqués de Valdecilla (IDIVAL), Cardenal H. Oria s/n, 39011 Santander, Spain.
  7. Olga Tapia: Instituto de Investigación Marqués de Valdecilla (IDIVAL), Cardenal H. Oria s/n, 39011 Santander, Spain. ORCID
  8. Ane Urtiaga: Department of Chemical and Biomolecular Engineering, ETSIIyT, University of Cantabria, Avda. Los Castros s/n, 39005 Santander, Spain.

Abstract

There is a huge interest in developing novel hollow fiber (HF) membranes able to modulate neural differentiation to produce in vitro blood-brain barrier (BBB) models for biomedical and pharmaceutical research, due to the low cell-inductive properties of the polymer HFs used in current BBB models. In this work, poly(ε-caprolactone) (PCL) and composite PCL/graphene (PCL/G) HF membranes were prepared by phase inversion and were characterized in terms of mechanical, electrical, morphological, chemical, and mass transport properties. The presence of graphene in PCL/G membranes enlarged the pore size and the water flux and presented significantly higher electrical conductivity than PCL HFs. A biocompatibility assay showed that PCL/G HFs significantly increased C6 cells adhesion and differentiation towards astrocytes, which may be attributed to their higher electrical conductivity in comparison to PCL HFs. On the other hand, PCL/G membranes produced a cytotoxic effect on the endothelial cell line HUVEC presumably related with a higher production of intracellular reactive oxygen species induced by the nanomaterial in this particular cell line. These results prove the potential of PCL HF membranes to grow endothelial cells and PCL/G HF membranes to differentiate astrocytes, the two characteristic cell types that could develop in vitro BBB models in future 3D co-culture systems.

Keywords

References

  1. Ann Biomed Eng. 2004 Dec;32(12):1728-43 [PMID: 15675684]
  2. Brain Res. 2003 Aug 8;980(2):233-41 [PMID: 12867263]
  3. Nano Lett. 2017 May 10;17(5):3297-3301 [PMID: 28383278]
  4. Membranes (Basel). 2018 Mar 05;8(1): [PMID: 29510552]
  5. Adv Healthc Mater. 2016 Nov;5(21):2732-2744 [PMID: 27600578]
  6. Membranes (Basel). 2020 May 27;10(6): [PMID: 32471264]
  7. J Cereb Blood Flow Metab. 2008 Feb;28(2):312-28 [PMID: 17609686]
  8. Brain Behav. 2017 Jun 30;7(8):e00755 [PMID: 28828216]
  9. Transl Neurodegener. 2017 Oct 25;6:28 [PMID: 29090092]
  10. Proc Natl Acad Sci U S A. 1997 Jan 7;94(1):1-6 [PMID: 8990149]
  11. J Mater Chem B. 2016 May 21;4(19):3169-3190 [PMID: 32263253]
  12. J Tissue Eng Regen Med. 2012 Apr;6(4):299-313 [PMID: 21706777]
  13. Prog Neurobiol. 2015 Feb;125:1-25 [PMID: 25461688]
  14. J Cereb Blood Flow Metab. 2018 Oct;38(10):1667-1681 [PMID: 30058456]
  15. Drug Des Devel Ther. 2019 Oct 18;13:3591-3605 [PMID: 31695329]
  16. Acta Biomater. 2013 May;9(5):6450-8 [PMID: 23318815]
  17. Nat Commun. 2018 Jan 22;9(1):323 [PMID: 29358641]
  18. Biomed Mater. 2011 Oct;6(5):055010 [PMID: 21921319]
  19. J Inherit Metab Dis. 2013 May;36(3):437-49 [PMID: 23609350]
  20. Nano Lett. 2007 Feb;7(2):238-42 [PMID: 17297984]
  21. Ann Biomed Eng. 2016 Jun;44(6):2036-48 [PMID: 26983841]
  22. Toxicol In Vitro. 2018 Apr;48:276-285 [PMID: 29409908]
  23. Adv Mater. 2011 Sep 22;23(36):H263-7 [PMID: 21823178]
  24. Nanomedicine. 2016 Jul;12(5):1347-55 [PMID: 26970024]
  25. Biomaterials. 2020 Jul;245:119980 [PMID: 32229330]
  26. RSC Adv. 2019 Jun 18;9(33):19164-19170 [PMID: 35516899]
  27. Brain Res. 1997 Oct 17;771(2):329-42 [PMID: 9401753]
  28. ACS Nano. 2011 Sep 27;5(9):7334-41 [PMID: 21793541]
  29. Tissue Eng. 2006 Oct;12(10):2717-27 [PMID: 17518641]
  30. Cells Tissues Organs. 2014;199(2-3):184-200 [PMID: 25412833]
  31. J R Soc Interface. 2006 Oct 22;3(10):589-601 [PMID: 16971328]
  32. Arch Dermatol Res. 2009 Feb;301(2):159-66 [PMID: 19115062]
  33. Macromol Biosci. 2018 Nov;18(11):e1800195 [PMID: 30253070]
  34. Cell Mol Neurobiol. 2008 Jun;28(4):519-28 [PMID: 18000753]

Grants

  1. INNVAL 17/20/Instituto de Investigación Sanitaria Valdecilla IDIVAL
  2. PCI2018-092929/Ministerio de Economía y Competitividad
  3. CTM-2016-75509-R/Ministerio de Economía y Competitividad

Word Cloud

Created with Highcharts 10.0.0membranesPCLPCL/GHFBBBHFscellvitromodelselectricalhigherhollowdifferentiationbarrierpropertiespolyε-caprolactonegraphenesignificantlyconductivitycellsastrocytesendothelialline3Dhugeinterestdevelopingnovelfiberablemodulateneuralproduceblood-brainbiomedicalpharmaceuticalresearchduelowcell-inductivepolymerusedcurrentworkcompositePCL/graphenepreparedphaseinversioncharacterizedtermsmechanicalmorphologicalchemicalmasstransportpresenceenlargedporesizewaterfluxpresentedbiocompatibilityassayshowedincreasedC6adhesiontowardsmayattributedcomparisonhandproducedcytotoxiceffectHUVECpresumablyrelatedproductionintracellularreactiveoxygenspeciesinducednanomaterialparticularresultsprovepotentialgrowdifferentiatetwocharacteristictypesdevelopfutureco-culturesystemsHollowFiberMembranesPCL/GrapheneScaffoldsPotentialDevelopVitroBlood-BrainBarrierModelsculturesbloodbrainmodelmixed-matrixfibers

Similar Articles

Cited By (8)