In Vitro Evaluation of Antimicrobial Peptide Tridecaptin M in Combination with Other Antibiotics against Multidrug Resistant .

Manoj Jangra, Vrushali Raka, Hemraj Nandanwar
Author Information
  1. Manoj Jangra: Clinical Microbiology & Bioactive Screening Laboratory, CSIR-Institute of Microbial Technology, Chandigarh 160 036, India. ORCID
  2. Vrushali Raka: Clinical Microbiology & Bioactive Screening Laboratory, CSIR-Institute of Microbial Technology, Chandigarh 160 036, India. ORCID
  3. Hemraj Nandanwar: Clinical Microbiology & Bioactive Screening Laboratory, CSIR-Institute of Microbial Technology, Chandigarh 160 036, India.

Abstract

The rapid emergence of antimicrobial resistance in coupled with the dried pipeline of novel treatments has driven the search for new therapeutic modalities. Gram-negative Bacteria have an extra outer membrane that serves as a permeability barrier for various hydrophobic and/or large compounds. One of the popular approaches to tackle this penetration barrier is use of potentiators or adjuvants in combination with traditional antibiotics. This study reports the in vitro potential of an antimicrobial peptide Tridecaptin M in combination with other antibiotics against different strains of . Tridecaptin M sensitized the Bacteria to rifampicin, vancomycin, and ceftazidime. Further, we observed that a Tridecaptin M and rifampicin combination killed the Bacteria completely in 4 h in an ex vivo blood infection model and was superior to rifampicin monotherapy. The study also found that concomitant administration of both compounds is not necessary to achieve the antimicrobial effect. Bacteria pre-treated with Tridecaptin M (for 2-4 h) followed by exposure to rifampicin showed similar killing as obtained for combined treatment. Additionally, this combination hampered the survival of persister development in comparison to rifampicin alone. These findings encourage the future investigation of this combination to treat severe infections caused by extremely drug-resistant .

Keywords

References

  1. Ann Clin Microbiol Antimicrob. 2019 Jul 2;18(1):19 [PMID: 31266519]
  2. BMC Microbiol. 2019 Mar 8;19(1):54 [PMID: 30849936]
  3. Cell Chem Biol. 2018 Apr 19;25(4):380-391.e5 [PMID: 29396290]
  4. Clin Microbiol Rev. 2013 Apr;26(2):274-88 [PMID: 23554417]
  5. ACS Infect Dis. 2020 Jun 12;6(6):1436-1450 [PMID: 32427476]
  6. Biomed Res Int. 2015;2015:679109 [PMID: 25664322]
  7. Front Microbiol. 2018 Nov 23;9:2864 [PMID: 30532748]
  8. Nature. 2019 Dec;576(7787):459-464 [PMID: 31747680]
  9. mBio. 2019 Jul 16;10(4): [PMID: 31311879]
  10. Ann Clin Microbiol Antimicrob. 2019 Dec 12;18(1):40 [PMID: 31831019]
  11. Nat Microbiol. 2017 Feb 22;2:17001 [PMID: 28224989]
  12. Antimicrob Agents Chemother. 2019 May 24;63(6): [PMID: 30936101]
  13. Molecules. 2019 Mar 03;24(5): [PMID: 30832412]
  14. Front Microbiol. 2019 Sep 18;10:2153 [PMID: 31620109]
  15. Org Biomol Chem. 2015 Jun 7;13(21):6073-81 [PMID: 25959079]
  16. Front Cell Infect Microbiol. 2019 Jun 11;9:193 [PMID: 31245302]
  17. Antimicrob Agents Chemother. 2016 Oct 21;60(11):6774-6779 [PMID: 27600048]
  18. J Antibiot (Tokyo). 2020 Jun;73(6):329-364 [PMID: 32152527]
  19. J Antimicrob Chemother. 2008 Feb;61(2):417-20 [PMID: 18174197]
  20. PLoS One. 2016 Mar 21;11(3):e0151270 [PMID: 26998609]
  21. Antimicrob Agents Chemother. 2015 Mar;59(3):1466-71 [PMID: 25534730]
  22. Clin Infect Dis. 2013 Aug;57(3):349-58 [PMID: 23616495]
  23. J Antimicrob Chemother. 2006 Sep;58(3):689-92 [PMID: 16870647]
  24. J Antimicrob Chemother. 1999 Nov;44(5):641-5 [PMID: 10552980]
  25. Antimicrob Agents Chemother. 2010 Dec;54(12):4971-7 [PMID: 20855724]
  26. Microorganisms. 2019 Oct 16;7(10): [PMID: 31623244]
  27. J Infect. 2006 Oct;53(4):274-8 [PMID: 16442632]
  28. Antibiotics (Basel). 2019 May 09;8(2): [PMID: 31075940]
  29. Crit Care. 2017 Dec 20;21(1):319 [PMID: 29262831]
  30. Antimicrob Agents Chemother. 2011 Nov;55(11):4943-60 [PMID: 21859938]
  31. Antimicrob Agents Chemother. 2016 Jun 20;60(7):3921-33 [PMID: 27067324]
  32. Antimicrob Agents Chemother. 2010 Mar;54(3):1165-72 [PMID: 20047914]
  33. Sci Rep. 2019 Dec 11;9(1):18870 [PMID: 31827113]
  34. J Infect Public Health. 2018 Nov - Dec;11(6):856-860 [PMID: 30057349]
  35. Antimicrob Agents Chemother. 2018 Dec 21;63(1): [PMID: 30323035]
  36. Clin Microbiol Rev. 2012 Jul;25(3):450-70 [PMID: 22763634]
  37. Nature. 2011 May 12;473(7346):216-20 [PMID: 21562562]
  38. Lancet Infect Dis. 2018 Mar;18(3):318-327 [PMID: 29276051]
  39. Ann Med. 2001 Apr;33(3):167-71 [PMID: 11370769]
  40. Antimicrob Agents Chemother. 1984 Oct;26(4):546-51 [PMID: 6440475]
  41. Int J Antimicrob Agents. 2019 Jun;53(6):726-745 [PMID: 30831234]
  42. Proc Natl Acad Sci U S A. 2016 Oct 11;113(41):11561-11566 [PMID: 27688760]
  43. Crit Care Med. 2014 May;42(5):1289-91 [PMID: 24736340]
  44. Front Med (Lausanne). 2019 Apr 16;6:74 [PMID: 31041313]
  45. Infect Dis Clin North Am. 2009 Dec;23(4):791-815, vii [PMID: 19909885]
  46. J Antimicrob Chemother. 2019 May 1;74(5):1277-1283 [PMID: 30759206]
  47. Int J Antimicrob Agents. 2019 Jun;53(6):868-872 [PMID: 30447380]
  48. Mol Microbiol. 2018 Jan;107(1):47-56 [PMID: 29114953]
  49. J Antimicrob Chemother. 2006 Sep;58(3):697-700 [PMID: 16895941]
  50. Int J Antimicrob Agents. 2014 Dec;44(6):493-9 [PMID: 25315408]
  51. ACS Infect Dis. 2019 Jul 12;5(7):1223-1230 [PMID: 31002491]
  52. Antimicrob Agents Chemother. 2017 Jul 25;61(8): [PMID: 28533232]

MeSH Term

Acinetobacter Infections
Acinetobacter baumannii
Anti-Bacterial Agents
Ceftazidime
Drug Resistance, Multiple
Drug Resistance, Multiple, Bacterial
Humans
Microbial Sensitivity Tests
Peptides
Pore Forming Cytotoxic Proteins
Rifampin
Vancomycin

Chemicals

Anti-Bacterial Agents
Peptides
Pore Forming Cytotoxic Proteins
tridecaptins
Vancomycin
Ceftazidime
Rifampin

Word Cloud

Created with Highcharts 10.0.0combinationMrifampicinbacteriaantimicrobialtridecaptinTridecaptinGram-negativebarriercompoundsantibioticsstudyhrapidemergenceresistancecoupleddriedpipelinenoveltreatmentsdrivensearchnewtherapeuticmodalitiesextraoutermembraneservespermeabilityvarioushydrophobicand/orlargeOnepopularapproachestacklepenetrationusepotentiatorsadjuvantstraditionalreportsvitropotentialpeptidedifferentstrainssensitizedvancomycinceftazidimeobservedkilledcompletely4exvivobloodinfectionmodelsuperiormonotherapyalsofoundconcomitantadministrationnecessaryachieveeffectBacteriapre-treated2-4followedexposureshowedsimilarkillingobtainedcombinedtreatmentAdditionallyhamperedsurvivalpersisterdevelopmentcomparisonalonefindingsencouragefutureinvestigationtreatsevereinfectionscausedextremelydrug-resistantVitroEvaluationAntimicrobialPeptideCombinationAntibioticsMultidrugResistantAcinetobacterbaumanniiantibiotic-resistancetherapypersisters

Similar Articles

Cited By