Bifunctional Nitrone-Conjugated Secondary Metabolite Targeting the Ribosome.

Emilianne M Limbrick, Michael Graf, Dagmara K Derewacz, Fabian Nguyen, Jeffrey M Spraggins, Maximiliane Wieland, Audrey E Ynigez-Gutierrez, Benjamin J Reisman, Boris Zinshteyn, Kathryn M McCulloch, T M Iverson, Rachel Green, Daniel N Wilson, Brian O Bachmann
Author Information
  1. Emilianne M Limbrick: Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States.
  2. Michael Graf: Institute of Biochemistry and Molecular Biology, University of Hamburg, Hamburg 20146, Germany.
  3. Dagmara K Derewacz: Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States.
  4. Fabian Nguyen: Department of Biochemistry, University of Munich, 81377 Munich, Germany.
  5. Jeffrey M Spraggins: Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States. ORCID
  6. Maximiliane Wieland: Institute of Biochemistry and Molecular Biology, University of Hamburg, Hamburg 20146, Germany.
  7. Audrey E Ynigez-Gutierrez: Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States.
  8. Benjamin J Reisman: Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States.
  9. Boris Zinshteyn: Department of Molecular Biology and Genetics, Johns Hopkins University. Baltimore, Maryland 21205, United States.
  10. Kathryn M McCulloch: Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States. ORCID
  11. T M Iverson: Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37205, United States.
  12. Rachel Green: Department of Molecular Biology and Genetics, Johns Hopkins University. Baltimore, Maryland 21205, United States.
  13. Daniel N Wilson: Institute of Biochemistry and Molecular Biology, University of Hamburg, Hamburg 20146, Germany. ORCID
  14. Brian O Bachmann: Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States. ORCID

Abstract

Many microorganisms possess the capacity for producing multiple antibiotic secondary metabolites. In a few notable cases, combinations of secondary metabolites produced by the same organism are used in important combination therapies for treatment of drug-resistant bacterial infections. However, examples of conjoined roles of bioactive metabolites produced by the same organism remain uncommon. During our genetic functional analysis of oxidase-encoding genes in the everninomicin producer var. , we discovered previously uncharacterized antibiotics everninomicin N and O, comprised of an everninomicin fragment conjugated to the macrolide rosamicin via a rare nitrone moiety. These metabolites were determined to be hydrolysis products of everninomicin P, a nitrone-linked conjugate likely the result of nonenzymatic condensation of the rosamicin aldehyde and the octasaccharide everninomicin F, possessing a hydroxylamino sugar moiety. Rosamicin binds the erythromycin macrolide binding site approximately 60 �� from the orthosomycin binding site of everninomicins. However, while individual ribosomal binding sites for each functional half of everninomicin P are too distant for bidentate binding, ligand displacement studies demonstrated that everninomicin P competes with rosamicin for ribosomal binding. Chemical protection studies and structural analysis of everninomicin P revealed that everninomicin P occupies both the macrolide- and orthosomycin-binding sites on the 70S ribosome. Moreover, resistance mutations within each binding site were overcome by the inhibition of the opposite functional antibiotic moiety binding site. These data together demonstrate a strategy for coupling orthogonal antibiotic pharmacophores, a surprising tolerance for substantial covalent modification of each antibiotic, and a potential beneficial strategy to combat antibiotic resistance.

References

  1. Nat Struct Mol Biol. 2015 Jun;22(6):470-5 [PMID: 25984971]
  2. Nat Commun. 2014 Mar 24;5:3501 [PMID: 24662426]
  3. Proc Natl Acad Sci U S A. 2003 Feb 18;100(4):1541-6 [PMID: 12563033]
  4. Proc Natl Acad Sci U S A. 2015 Sep 15;112(37):11547-52 [PMID: 26240321]
  5. Nat Prod Rep. 2017 Jul 1;34(7):832-885 [PMID: 28530279]
  6. Mol Cell. 2015 Jun 4;58(5):832-44 [PMID: 26028538]
  7. Proc Natl Acad Sci U S A. 2016 Jul 5;113(27):7527-32 [PMID: 27330110]
  8. Methods Enzymol. 1988;164:419-25 [PMID: 2468068]
  9. Angew Chem Int Ed Engl. 2019 Jan 2;58(1):200-204 [PMID: 30375753]
  10. Antimicrob Agents Chemother. 1995 Mar;39(3):577-85 [PMID: 7793855]
  11. Adv Appl Microbiol. 2004;54:107-28 [PMID: 15251278]
  12. Nucleic Acids Res. 2019 Jul 2;47(W1):W81-W87 [PMID: 31032519]
  13. Antimicrob Agents Chemother. 2013 Dec;57(12):5994-6004 [PMID: 24041905]
  14. Curr Opin Chem Biol. 2016 Dec;35:97-108 [PMID: 27693891]
  15. Nat Chem Biol. 2014 Nov;10(11):963-8 [PMID: 25262415]
  16. Mol Microbiol. 2001 Sep;41(6):1349-56 [PMID: 11580839]
  17. Mol Microbiol. 2003 Jul;49(2):309-18 [PMID: 12828631]
  18. Proc Natl Acad Sci U S A. 2003 Nov 25;100 Suppl 2:14555-61 [PMID: 12970466]
  19. Proc Natl Acad Sci U S A. 2001 Mar 27;98(7):3726-31 [PMID: 11259679]
  20. J Am Chem Soc. 2016 Sep 7;138(35):11176-84 [PMID: 27505044]
  21. Biochemistry. 2010 Nov 2;49(43):9306-17 [PMID: 20866105]
  22. J Antibiot (Tokyo). 1982 Jul;35(7):866-74 [PMID: 6757230]
  23. Antimicrob Agents Chemother. 2002 Nov;46(11):3339-42 [PMID: 12384333]
  24. Proc Natl Acad Sci U S A. 2016 Nov 1;113(44):E6796-E6805 [PMID: 27791159]
  25. Nat Methods. 2017 Jan;14(1):75-82 [PMID: 27819661]
  26. J Mol Biol. 1999 Feb 19;286(2):375-87 [PMID: 9973558]
  27. Antimicrob Agents Chemother. 2001 Jan;45(1):1-12 [PMID: 11120937]

Grants

  1. P60 DK020593/NIDDK NIH HHS
  2. P41 GM103391/NIGMS NIH HHS
  3. /Howard Hughes Medical Institute
  4. P30 EY008126/NEI NIH HHS
  5. S10 OD012359/NIH HHS
  6. T32 GM152284/NIGMS NIH HHS
  7. R01 GM092218/NIGMS NIH HHS
  8. R01 AI140400/NIAID NIH HHS
  9. U24 DK059637/NIDDK NIH HHS
  10. P30 DK058404/NIDDK NIH HHS
  11. T32 HL007751/NHLBI NIH HHS
  12. T32 GM007347/NIGMS NIH HHS
  13. P30 DK020593/NIDDK NIH HHS
  14. F30 CA236131/NCI NIH HHS
  15. P30 CA068485/NCI NIH HHS
  16. T32 GM065086/NIGMS NIH HHS

MeSH Term

Aminoglycosides
Binding Sites
Cryoelectron Microscopy
Erythromycin
Leucomycins
Micromonospora
Multigene Family
Nitrogen Oxides
Ribosomes

Chemicals

Aminoglycosides
Leucomycins
Nitrogen Oxides
nitrones
evernimicin
Erythromycin
rosaramicin

Word Cloud

Created with Highcharts 10.0.0everninomicinbindingantibioticPmetabolitessitefunctionalrosamicinmoietysecondaryproducedorganismHoweveranalysismacrolideribosomalsitesstudiesresistancestrategyManymicroorganismspossesscapacityproducingmultiplenotablecasescombinationsusedimportantcombinationtherapiestreatmentdrug-resistantbacterialinfectionsexamplesconjoinedrolesbioactiveremainuncommongeneticoxidase-encodinggenesproducervardiscoveredpreviouslyuncharacterizedantibioticsNOcomprisedfragmentconjugatedviararenitronedeterminedhydrolysisproductsnitrone-linkedconjugatelikelyresultnonenzymaticcondensationaldehydeoctasaccharideFpossessinghydroxylaminosugarRosamicinbindserythromycinapproximately60��orthosomycineverninomicinsindividualhalfdistantbidentateliganddisplacementdemonstratedcompetesChemicalprotectionstructuralrevealedoccupiesmacrolide-orthosomycin-binding70SribosomeMoreovermutationswithinovercomeinhibitionoppositedatatogetherdemonstratecouplingorthogonalpharmacophoressurprisingtolerancesubstantialcovalentmodificationpotentialbeneficialcombatBifunctionalNitrone-ConjugatedSecondaryMetaboliteTargetingRibosome

Similar Articles

Cited By