, First Identified in in 1910, Is Encoded by the Arylalkalamine N-Acetyltransferase (AANAT1) Gene.

Eric P Spana, Amanda B Abrams, Katharine T Ellis, Jason C Klein, Brandon T Ruderman, Alvin H Shi, Daniel Zhu, Andrea Stewart, Susan May
Author Information
  1. Eric P Spana: Department of Biology, Duke University, Durham, NC 27708 spana@duke.edu. ORCID
  2. Amanda B Abrams: Department of Biology, Duke University, Durham, NC 27708 spana@duke.edu.
  3. Katharine T Ellis: Department of Biology, Duke University, Durham, NC 27708 spana@duke.edu. ORCID
  4. Jason C Klein: Department of Biology, Duke University, Durham, NC 27708 spana@duke.edu. ORCID
  5. Brandon T Ruderman: Department of Biology, Duke University, Durham, NC 27708 spana@duke.edu.
  6. Alvin H Shi: Department of Biology, Duke University, Durham, NC 27708 spana@duke.edu. ORCID
  7. Daniel Zhu: Department of Biology, Duke University, Durham, NC 27708 spana@duke.edu.
  8. Andrea Stewart: Department of Biology, Duke University, Durham, NC 27708 spana@duke.edu.
  9. Susan May: Department of Biology, Duke University, Durham, NC 27708 spana@duke.edu.

Abstract

The pigmentation mutation is a commonly used recombination marker characterized by a darkly pigmented region at the wing hinge. Identified in 1910 by Thomas Hunt Morgan, was characterized by Sturtevant as the most "workable" mutant in the rightmost region of the second chromosome and eventually localized to 2-107.0 and 60C1-2. Though the first mutation was isolated over 110 years ago, is still not associated with any gene. Here, as part of an undergraduate-led research effort, we show that is encoded by the () gene. Both alleles from the Morgan lab contain a retrotransposon in exon 1 of the RB transcript of the gene. We have also identified a new insertion allele and generated multiple deletion alleles in that all give a strong phenotype. In addition, expression of RNAi constructs either ubiquitously or in the dorsal portion of the developing wing generates a similar phenotype. We find that alleles have additional phenotypes, including ectopic pigmentation in the posterior pupal case, leg joints, cuticular sutures and overall body color. We propose that the acetylated dopamine generated by decreases the dopamine pool available for melanin production. When function is decreased, the excess dopamine enters the melanin pathway to generate the phenotype.

Keywords

References

  1. Science. 2000 Mar 10;287(5459):1834-7 [PMID: 10710313]
  2. FEBS Lett. 1995 Nov 13;375(1-2):148-50 [PMID: 7498465]
  3. Genetics. 2010 Dec;186(4):1095-109 [PMID: 20876560]
  4. Proc Natl Acad Sci U S A. 1986 Jan;83(2):404-8 [PMID: 3001735]
  5. Front Endocrinol (Lausanne). 2019 Apr 17;10:249 [PMID: 31057485]
  6. Cell. 2018 Jul 26;174(3):730-743.e22 [PMID: 30033368]
  7. Development. 2011 Jan;138(1):149-58 [PMID: 21138977]
  8. J Biol Chem. 2007 Feb 16;282(7):4233-7 [PMID: 17164235]
  9. Adv Genet. 1987;24:127-222 [PMID: 3124532]
  10. CBE Life Sci Educ. 2014 Spring;13(1):111-30 [PMID: 24591510]
  11. Elife. 2018 Apr 19;7: [PMID: 29671739]
  12. Biochem J. 2012 Sep 15;446(3):395-404 [PMID: 22716280]
  13. Development. 2010 Dec;137(23):4083-90 [PMID: 21062865]
  14. Biochem J. 2002 Nov 15;368(Pt 1):333-40 [PMID: 12164780]
  15. G3 (Bethesda). 2018 Jan 4;8(1):9-16 [PMID: 29066472]
  16. Biochem Genet. 1975 Jun;13(5-6):353-6 [PMID: 810134]
  17. Genetics. 2010 Dec;186(4):1111-25 [PMID: 20876565]
  18. Genetics. 2013 Aug;194(4):1029-35 [PMID: 23709638]
  19. DNA Cell Biol. 2000 Nov;19(11):697-705 [PMID: 11098219]
  20. G3 (Bethesda). 2019 Nov 5;9(11):3791-3800 [PMID: 31690598]
  21. J Neurochem. 1988 Feb;50(2):382-7 [PMID: 3121790]
  22. J Biol Chem. 2010 Jun 18;285(25):19553-60 [PMID: 20332088]
  23. Genetics. 2005 Oct;171(2):571-81 [PMID: 15972463]
  24. G3 (Bethesda). 2018 Mar 28;8(4):1161-1171 [PMID: 29420191]
  25. MicroPubl Biol. 2019 Jun 05;2019: [PMID: 32550446]
  26. Science. 1910 Jul 22;32(812):120-2 [PMID: 17759620]
  27. Neuron. 2007 Aug 2;55(3):435-47 [PMID: 17678856]
  28. Biochemistry. 2014 Dec 16;53(49):7777-93 [PMID: 25406072]
  29. Genome Biol. 2012;13(3):149 [PMID: 22445094]
  30. G3 (Bethesda). 2016 Oct 13;6(10):3017-3026 [PMID: 27527793]
  31. Chromosoma. 2016 Jun;125(3):535-51 [PMID: 26596987]
  32. Dev Biol. 2018 Jun 15;438(2):111-123 [PMID: 29634916]
  33. Science. 2006 Sep 22;313(5794):1775-81 [PMID: 16990546]
  34. Nat Commun. 2012;3:1295 [PMID: 23250425]
  35. Genetics. 2011 Jul;188(3):731-43 [PMID: 21515576]
  36. Proc Natl Acad Sci U S A. 1996 Oct 29;93(22):12315-20 [PMID: 8901578]
  37. Insect Biochem Mol Biol. 2016 Jul;74:21-31 [PMID: 27125584]
  38. Biochem Biophys Res Commun. 2001 Mar 2;281(3):611-3 [PMID: 11237700]
  39. Genetics. 1923 May;8(3):276-300 [PMID: 17246014]
  40. Brief Bioinform. 2013 Mar;14(2):193-202 [PMID: 22445902]
  41. Bioinformatics. 2013 Nov 15;29(22):2936-7 [PMID: 23995391]
  42. Curr Top Dev Biol. 2016;119:27-61 [PMID: 27282023]
  43. Genome Biol. 2002;3(12):RESEARCH0084 [PMID: 12537573]
  44. Science. 2000 Mar 24;287(5461):2185-95 [PMID: 10731132]
  45. Genome Biol. 2012;13(3):R21 [PMID: 22445104]
  46. MicroPubl Biol. 2019 Apr 26;2019: [PMID: 32550448]
  47. Exp Anim. 2014;63(2):107-19 [PMID: 24770636]
  48. Elife. 2020 Sep 21;9: [PMID: 32955431]
  49. FEBS Lett. 2014 Feb 14;588(4):594-9 [PMID: 24444601]
  50. Genetics. 2007 Oct;177(2):689-97 [PMID: 17720911]
  51. PLoS Genet. 2015 Nov 20;11(11):e1005625 [PMID: 26587980]
  52. Insect Biochem Mol Biol. 2016 Dec;79:119-129 [PMID: 27816487]
  53. PLoS One. 2014 Mar 25;9(3):e92680 [PMID: 24667367]
  54. Bioinformatics. 2018 Sep 15;34(18):3094-3100 [PMID: 29750242]
  55. Gen Comp Endocrinol. 2019 Aug 1;279:27-34 [PMID: 30026020]
  56. Genetics. 1990 Dec;126(4):1061-9 [PMID: 1706290]
  57. Physiol Rev. 2017 Oct 1;97(4):1235-1294 [PMID: 28794168]
  58. Genetics. 2015 May;200(1):331-42 [PMID: 25769982]
  59. G3 (Bethesda). 2015 Mar 04;5(5):719-40 [PMID: 25740935]
  60. Genetics. 2016 May;203(1):403-13 [PMID: 26984060]
  61. Genetics. 2018 Apr;208(4):1279-1289 [PMID: 29618588]
  62. DNA Cell Biol. 1998 Jul;17(7):621-33 [PMID: 9703021]

MeSH Term

Acetyltransferases
Alleles
Animals
Drosophila Proteins
Drosophila melanogaster
Mutation
Phenotype
Pupa
Wings, Animal

Chemicals

Drosophila Proteins
Acetyltransferases
AANAT1 protein, Drosophila

Word Cloud

Created with Highcharts 10.0.0geneallelesphenotypedopaminepigmentationmutationcharacterizedregionwingIdentified1910MorgangeneratedmelaninAANAT1commonlyusedrecombinationmarkerdarklypigmentedhingeThomasHuntSturtevant"workable"mutantrightmostsecondchromosomeeventuallylocalized2-107060C1-2Thoughfirstisolated110yearsagostillassociatedpartundergraduate-ledresearcheffortshowencodedlabcontainretrotransposonexon1RBtranscriptalsoidentifiednewinsertionallelemultipledeletiongivestrongadditionexpressionRNAiconstructseitherubiquitouslydorsalportiondevelopinggeneratessimilarfindadditionalphenotypesincludingectopicposteriorpupalcaselegjointscuticularsuturesoverallbodycolorproposeacetylateddecreasespoolavailableproductionfunctiondecreasedexcessenterspathwaygenerateFirstEncodedArylalkalamineN-AcetyltransferaseGeneDrosophilacuticlepigmentspeck

Similar Articles

Cited By