Vulnerability of global coral reef habitat suitability to ocean warming, acidification and eutrophication.

Yi Guan, Sönke Hohn, Christian Wild, Agostino Merico
Author Information
  1. Yi Guan: Systems Ecology Group, Leibniz Centre for Tropical Marine Research, Bremen, Germany. ORCID
  2. Sönke Hohn: Systems Ecology Group, Leibniz Centre for Tropical Marine Research, Bremen, Germany.
  3. Christian Wild: Department Marine Ecology, Faculty of Biology and Chemistry (FB 2), University of Bremen, Bremen, Germany.
  4. Agostino Merico: Systems Ecology Group, Leibniz Centre for Tropical Marine Research, Bremen, Germany. ORCID

Abstract

Coral reefs are threatened by global and local stressors. Yet, reefs appear to respond differently to different environmental stressors. Using a global dataset of coral reef occurrence as a proxy for the long-term adaptation of corals to environmental conditions in combination with global environmental data, we show here how global (warming: sea surface temperature; acidification: aragonite saturation state, Ω ) and local (eutrophication: nitrate concentration, and phosphate concentration) stressors influence coral reef habitat suitability. We analyse the relative distance of coral communities to their regional environmental optima. In addition, we calculate the expected change of coral reef habitat suitability across the tropics in relation to an increase of 0.1°C in temperature, an increase of 0.02 μmol/L in nitrate, an increase of 0.01 μmol/L in phosphate and a decrease of 0.04 in Ω . Our findings reveal that only 6% of the reefs worldwide will be unaffected by local and global stressors and can thus act as temporary refugia. Local stressors, driven by nutrient increase, will affect 22% of the reefs worldwide, whereas global stressors will affect 11% of these reefs. The remaining 61% of the reefs will be simultaneously affected by local and global stressors. Appropriate wastewater treatments can mitigate local eutrophication and could increase areas of temporary refugia to 28%, allowing us to 'buy time', while international agreements are found to abate global stressors.

Keywords

References

  1. Albright, R., Langdon, C., & Anthony, K. R. N. (2013). Dynamics of seawater carbonate chemistry, production, and calcification of a coral reef flat, central Great Barrier Reef. Biogeosciences, 10(10), 6747-6758. https://doi.org/10.5194/bg-10-6747-2013
  2. Albright, R., Mason, B., & Langdon, C. (2008). Effect of aragonite saturation state on settlement and post-settlement growth of Porites astreoides larvae. Coral Reefs, 27(3), 485-490. https://doi.org/10.1007/s00338-008-0392-5
  3. Albright, R., Mason, B., Miller, M., & Langdon, C. (2010). Ocean acidification compromises recruitment success of the threatened Caribbean coral Acropora palmata. Proceedings of the National Academy of Sciences of the United States of America, 107(47), 20400-20404. https://doi.org/10.1073/pnas.1007273107/
  4. Anthony, K. R. N. (2016). Coral reefs under climate change and ocean acidification: Challenges and opportunities for management and policy. Annual Review of Environment and Resources, 41, 59-81. https://doi.org/10.1146/annurev-environ-110615-085610
  5. Anthony, K., Bay, L. K., Costanza, R., Firn, J., Gunn, J., Harrison, P., … Walshe, T. (2017). New interventions are needed to save coral reefs. Nature Ecology & Evolution, 1(10), 1420-1422. https://doi.org/10.1038/s41559-017-0313-5
  6. Anthony, K. N. R., Kline, D. I., Diaz-Pulido, G., Dove, S., & Hoegh-Guldberg, O. (2008). Ocean acidification causes bleaching and productivity loss in coral reef builders. PNAS, 105(45), 17442-17446. https://doi.org/10.1073/pnas.0804478105
  7. Anthony, K. R. N., Maynard, J. A., Diaz-Pulido, G., Mumby, P. J., Marshall, P. A., Cao, L., & Hoegh-Guldberg, O. (2011). Ocean acidification and warming will lower coral reef resilience. Global Change Biology, 17(5), 1798-1808. https://doi.org/10.1111/j.1365-2486.2010.02364.x
  8. Bayraktarov, E., Saunders, M. I., Abdullah, S., Mills, M., Beher, J., Possingham, H. P., … Lovelock, C. E. (2016). The cost and feasibility of marine coastal restoration. Ecological Applications, 26(4), 1055-1074. https://doi.org/10.1890/15-1077
  9. Beck, M. W., Losada, I. J., Reguero, B. G., Mendendez, P., & Burke, L. (2017). The global flood protection savings provided by coral reefs. Nature Communications, 9(1). https://doi.org/10.1038/s41467-018-04568-z
  10. Berkelmans, R., & Oliver, J. K. (1998). Large-scale bleaching of corals on the Great Barrier Reef. Coral Reefs, 18, 55-60. https://doi.org/10.1007/s003380050142
  11. Brodie, J., Fabricius, K., De’ath, G., & Okaji, K. (2005). Are increased nutrient inputs responsible for more outbreaks of crown-of-thorns starfish? An appraisal of the evidence. Marine Pollution Bulletin, 51(1-4), 266-278. https://doi.org/10.1016/j.marpolbul.2004.10.035
  12. Bruno, J. F., Petes, L. E., Harvell, C. D., & Hettinger, A. (2003). Nutrient enrichment can increase the severity of coral diseases. Ecology Letters, 6(12), 1056-1061. https://doi.org/10.1046/j.1461-0248.2003.00544.x
  13. Bruno, J. F., & Valdivia, A. (2016). Coral reef degradation is not correlated with local human population density. Scientific Reports, 6(July), 1-8. https://doi.org/10.1038/srep29778
  14. Bryant, D., Burke, L., McManus, J., & Spalding, M. (1998). Reefs at risk revisited in the coral triangle. National Geographic.
  15. Burke, L., Reytar, K., Spalding, M., & Perrry, A. (2011). Reefs at risk revisited. Washington, DC: World Resources Institute.
  16. Cacciapaglia, C., & van Woesik, R. (2015). Reef-coral refugia in a rapidly changing ocean. Global Change Biology, 21, 2272-2282. https://doi.org/10.1111/gcb.12851
  17. Carpenter, K. E., Abrar, M., Aeby, G., Aronson, R. B., Banks, S., Bruckner, A., … Wood, E. (2008). One-third of reef-building corals face elevated extinction risk from climate change and local impacts. Science, 321(5888), 560-563. https://doi.org/10.1126/science.1159196
  18. Casey, J. M., Connolly, S. R., & Ainsworth, T. D. (2015). Coral transplantation triggers shift in microbiome and promotion of coral disease associated potential pathogens. Scientific Reports, 5(January), 1-11. https://doi.org/10.1038/srep11903
  19. Cesar, H., & Chong, C. K. (2004). Economic valuation and socioeconomics of coral reefs: Methodological issues and three case studies. In M. Ahmed, C. K. Chong, & H. Cesar (Eds.), Economic valuation and policy priorities for sustainable management of coral reefs (pp. 14-40). Penang, Malaysia: WorldFish Centre.
  20. Chamberland, V. F., Vermeij, M. J. A., Brittsan, M., Carl, M., Schick, M., Snowden, S., … Petersen, D. (2015). Restoration of critically endangered elkhorn coral (Acropora palmata) populations using larvae reared from wild-caught gametes. Global Ecology and Conservation, 4, 526-537. https://doi.org/10.1016/j.gecco.2015.10.005
  21. Cole, C., Finch, A. A., Hintz, C., Hintz, K., & Allison, N. (2018). Effects of seawater pCO2 and temperature on calcification and productivity in the coral genus Porites spp.: An exploration of potential interaction mechanisms. Coral Reefs, 37(2), 471-481. https://doi.org/10.1007/s00338-018-1672-3
  22. Coles, S. L., & Riegl, B. M. (2013). Thermal tolerances of reef corals in the Gulf: A review of the potential for increasing coral survival and adaptation to climate change through assisted translocation. Marine Pollution Bulletin, 72(2), 323-332. https://doi.org/10.1016/j.marpolbul.2012.09.006
  23. Cook, C. B., & D’elia, C. F. (1987). Are natural populations of zooxanthellae ever nutrient-limited? Symbiosis, 4(1-3), 199-211.
  24. Cooper, T. F., De'ath, G., Fabricius, K. E., & Lough, J. M. (2008). Declining coral calcification in massive Porites in two nearshore regions of the northern Great Barrier Reef. Global Change Biology, 14(3), 529-538. https://doi.org/10.1111/j.1365-2486.2007.01520.x
  25. Cooper, T. F., O’Leary, R. A., & Lough, J. M. (2012). Growth of Western Australian corals in the anthropocene. Science, 335(6068), 593-596. https://doi.org/10.1126/science.1214570
  26. Costanza, R., de Groot, R., Sutton, P., van der Ploeg, S., Anderson, S. J., Kubiszewski, I., … Turner, R. K. (2014). Changes in the global value of ecosystem services. Global Environmental Change, 26(1), 152-158. https://doi.org/10.1016/j.gloenvcha.2014.04.002
  27. Côté, I. M., & Darling, E. S. (2010). Rethinking ecosystem resilience in the face of climate change. PLoS Biology, 8(7), https://doi.org/10.1371/journal.pbio.1000438
  28. Couce, E., Ridgwell, A., & Hendy, E. J. (2013). Future habitat suitability for coral reef ecosystems under global warming and ocean acidification. Global Change Biology, 19(12), 3592-3606. https://doi.org/10.1111/gcb.12335
  29. D’Angelo, C., & Wiedenmann, J. (2014). Impacts of nutrient enrichment on coral reefs: New perspectives and implications for coastal management and reef survival. Current Opinion in Environmental Sustainability, 7(2), 82-93. https://doi.org/10.1016/j.cosust.2013.11.029
  30. Darling, E. S., Alvarez-Filip, L., Oliver, T. A., Mcclanahan, T. R., & Côté, I. M. (2012). Evaluating life-history strategies of reef corals from species traits. Ecology Letters, 15(12), 1378-1386. https://doi.org/10.1111/j.1461-0248.2012.01861.x
  31. Darling, E. S., McClanahan, T. R., Maina, J., Gurney, G. G., Graham, N. A. J., Januchowski-Hartley, F., … Mouillot, D. (2019). Social-environmental drivers inform strategic management of coral reefs in the Anthropocene. Nature Ecology and Evolution, 3(9), 1341-1350. https://doi.org/10.1038/s41559-019-0953-8
  32. De'ath, G., Lough, J. M., & Fabricius, K. E. (2009). Declining coral calcification on the Great Barrier Reef. Science, 323, 116-120. https://doi.org/10.1126/science.1165283
  33. Descombes, P., Wisz, M. S., Leprieur, F., Parravicini, V., Heine, C., Olsen, S. M., … Pellissier, L. (2015). Forecasted coral reef decline in marine biodiversity hotspots under climate change. Global Change Biology, 21(7), 2479-2487. https://doi.org/10.1111/gcb.12868
  34. Deutsch, C. A., Tewksbury, J. J., Huey, R. B., Sheldon, K. S., Ghalambor, C. K., Haak, D. C., & Martin, P. R. (2008). Impacts of climate warming on terrestrial ectotherms across latitude. Proceedings of the National Academy of Sciences of the United States of America, 105(18), 6668-6672. https://doi.org/10.1073/pnas.0709472105
  35. Doo, S. S., Edmunds, P. J., & Carpenter, R. C. (2019). Ocean acidification effects on in situ coral reef metabolism. Scientific Reports, 9(1), 1-8. https://doi.org/10.1038/s41598-019-48407-7
  36. Doropoulos, C., & Diaz-Pulido, G. (2013). High CO2 reduces the settlement of a spawning coral on three common species of crustose coralline algae. Marine Ecology Progress Series, 475, 93-99. https://doi.org/10.3354/meps10096
  37. Eakin, C. M., Morgan, J. A., Heron, S. F., Smith, T. B., Liu, G., Alvarez-Filip, L., … Yusuf, Y. (2010). Caribbean corals in crisis: Record thermal stress, bleaching, and mortality in 2005. PLoS One, 5(11), e13969. https://doi.org/10.1371/journal.pone.0013969
  38. Edinger, E. N., Jompa, J., Limmon, G. V., Widjatmoko, W., & Risk, M. J. (1998). Reef degradation and coral biodiversity in Indonesia: Effects of land-based pollution, destructive fishing practices and changes over time. Marine Pollution Bulletin, 36(8), 617-630. https://doi.org/10.1016/S0025-326X(98)00047-2
  39. Epstein, N., Bak, R. P. M., & Rinkevich, B. (2001). Strategies for gardening denuded coral reef areas: The applicability of using different types of coral material for reef restoration. Restoration Ecology, 9(4), 432-442. https://doi.org/10.1046/j.1526-100X.2001.94012.x
  40. Eyre, B. D., Andersson, A. J., & Cyronak, T. (2014). Benthic coral reef calcium carbonate dissolution in an acidifying ocean. Nature Climate Change, 4(11), 969-976. https://doi.org/10.1038/nclimate2380
  41. Eyre, B. D., Cyronak, T., Drupp, P., De Carlo, E. H., Sachs, J. P., & Andersson, A. J. (2018). Coral reefs will transition to net dissolving before end of century. Science, 359, 908-911. https://doi.org/10.1126/science.aao1118
  42. Fabricius, K., De’ath, G., McCook, L., Turak, E., & Williams, D. M. B. (2005). Changes in algal, coral and fish assemblages along water quality gradients on the inshore Great Barrier Reef. Marine Pollution Bulletin, 51(1-4), 384-398. https://doi.org/10.1016/j.marpolbul.2004.10.041
  43. Fabricius, K. E., Langdon, C., Uthicke, S., Humphrey, C., Noonan, S., De’ath, G., … Lough, J. M. (2011). Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations. Nature Climate Change, 1(6), 165-169. https://doi.org/10.1038/NCLIMATE1122
  44. Fabricius, K. E., Noonan, S. H. C., Abrego, D., Harrington, L., & De'ath, G. (2017). Low recruitment due to altered settlement substrata as primary constraint for coral communities under ocean acidification. Proceedings of the Royal Society B: Biological Sciences, 284(1862). https://doi.org/10.1098/rspb.2017.1536
  45. Falkowski, P. G., Dubinsky, Z., Muscatine, L., & McCloskey, L. (1993). Population control in symbiotic corals. BioScience, 43(9), 606-611. https://doi.org/10.2307/1312147
  46. Farquhar, G. D., von Caemmerer, S., & Berry, J. A. (1980). A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 149(1), 78-90. https://doi.org/10.1007/BF00386231
  47. Ferrier-Pagès, C., Gattuso, J.-P., Dallot, S., & Jaubert, J. (2000). Effect of nutrient enrichment on growth and photosynthesis of the zooxanthellate coral Stylophora pistillata. Coral Reefs, 19(2), 103-113. https://doi.org/10.1007/s003380000078
  48. Figueiredo, J., Baird, A. H., Harii, S., & Connolly, S. R. (2014). Increased local retention of reef coral larvae as a result of ocean warming. Nature Climate Change, 4(6), 498-502. https://doi.org/10.1038/NCLIMATE2210
  49. Fisher, R., O’Leary, R. A., Low-Choy, S., Mengersen, K., Knowlton, N., Brainard, R. E., & Caley, M. J. (2015). Species richness on coral reefs and the pursuit of convergent global estimates. Current Biology, 25(4), 500-505. https://doi.org/10.1016/j.cub.2014.12.022
  50. Freedman, D., & Diaconis, P. (1981). On the histogram as a density estimator: L 2 theory. Zeitschrift Für Wahrscheinlichkeitstheorie Und Verwandte Gebiete, 57(4), 453-476. https://doi.org/10.1007/BF01025868
  51. Freeman, L. A., Kleypas, J. A., & Miller, A. J. (2013). Coral reef habitat response to climate change scenarios. PLoS One, 8(12), 1-14. https://doi.org/10.1371/journal.pone.0082404
  52. Garcia, D. (2010). Robust smoothing of gridded data in one and higher dimensions with missing values. Computational Statistics and Data Analysis, 54, 1167-1178. https://doi.org/10.1016/j.csda.2011.12.001
  53. Garcia, H. E., Weathers, K. W., Paver, C. R., Smolyar, I., Boyer, T. P., Locarnini, R. A., …Reagan, J. R. (2019). World ocean atlas 2018. Volume 4: Dissolved inorganic nutrients (phosphate, nitrate and nitrate+nitrite, silicate). A. Mishonov Technical Editor, NOAA Atlas NESDIS, 84, 35 pp.
  54. Guan, Y., Hohn, S., & Merico, A. (2015). Suitable environmental ranges for potential Coral reef habitats in the tropical ocean. PLoS One, 10(6), e0128831. https://doi.org/10.1371/journal.pone.0128831
  55. Halpern, B. S., Selkoe, K. A., Micheli, F., & Kappel, C. V. (2007). Evaluating and ranking the vulnerability of global marine ecosystems to anthropogenic threats. Conservation Biology, 21(5), 1301-1315. https://doi.org/10.1111/j.1523-1739.2007.00752.x
  56. Hock, K., Wolff, N. H., Ortiz, J. C., Condie, S. A., Anthony, K. R. N., Blackwell, P. G., & Mumby, P. J. (2017). Connectivity and systemic resilience of the Great Barrier Reef. PLoS Biology, 15(11), 1-23. https://doi.org/10.1371/journal.pbio.2003355
  57. Hoegh-Guldberg, O. (1994). Population dynamics of symbiotic zooxanthellae in the coral Pocillopora damicornis exposed to elevated ammonium [(NH4)2SO4] concentrations. Pacific Science, 48(3), 263-272.
  58. Hoegh-Guldberg, O., Hughes, L., McIntyre, S., Lindenmayer, D. B., Parmesan, C., Possingham, H. P., & Thomas, C. D. (2008). Assisted colonization and rapid climate change. Science, 321, 345-346. https://doi.org/10.1126/science.1157897
  59. Howarth, R. W., Sharpley, A., & Walker, D. (2002). Sources of nutrient pollution to coastal waters in the United States: Implications for achieving coastal water quality goals. Estuaries, 25(4 B), 656-676. https://doi.org/10.1007/BF02804898
  60. Huey, R. B., Kearney, M. R., Krockenberger, A., Holtum, J. A. M., Jess, M., & Williams, S. E. (2012). Predicting organismal vulnerability to climate warming: Roles of behaviour, physiology and adaptation. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 367(1596), 1665-1679. https://doi.org/10.1098/rstb.2012.0005
  61. Hughes, T. P., Anderson, K. D., Connolly, S. R., Heron, S. F., Kerry, J. T., Lough, J. M., … Wilson, S. K. (2018). Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science, 359(6371), 80-83. https://doi.org/10.1126/science.aan8048
  62. Hughes, T. P., Baird, A. H., Bellwood, D. R., Card, M., Connolly, S. R., Folke, C., … Roughgarden, J. (2003). Climate change, human impacts, and the resilience of coral reefs. Science, 301(5635), 929-933. https://doi.org/10.1126/science.1085046
  63. Hughes, T. P., Kerry, J. T., Álvarez-Noriega, M., Álvarez-Romero, J. G., Anderson, K. D., Baird, A. H., … Wilson, S. K. (2017). Global warming and recurrent mass bleaching of corals. Nature, 543(7645), 373-377. https://doi.org/10.1038/nature21707
  64. Hughes, T. P., Kerry, J. T., & Simpson, T. (2018). Large-scale bleaching of corals on the Great Barrier Reef. Ecology, 99(2), 501. https://doi.org/10.1002/ecy.2092
  65. Jury, C. P., & Toonen, R. J. (2019). Adaptive responses and local stressor mitigation drive coral resilience in warmer, more acidic oceans. Proceedings of the Royal Society B: Biological Sciences, 286(1902). https://doi.org/10.1098/rspb.2019.0614
  66. Kappel, C. V., Halpern, B. S., Selkoe, K. A., & Cooke, R. M. (2011). Eliciting expert knowledge of ecosystem vulnerability to human stressors to support comprehensive ocean managemant. In A. H. Perera, C. A. Drew, & C. J. Johnson (Eds.), Expert knowledge and its application in landscape ecology (p. 253). Springer. https://doi.org/10.1007/978-1-4614-1034-8
  67. Kegler, P., Kegler, H. F., Gärdes, A., Ferse, S. C. A., Lukman, M., Alfiansah, Y. R., … Kunzmann, A. (2017). Bacterial biofilm communities and coral larvae settlement at different levels of anthropogenic impact in the spermonde archipelago, Indonesia. Frontiers in Marine Science, 4(August), 1-15. https://doi.org/10.3389/fmars.2017.00270
  68. Kennedy, E. V., Perry, C. T., Halloran, P. R., Iglesias-Prieto, R., Schönberg, C. H. L., Wisshak, M., … Mumby, P. J. (2013). Avoiding coral reef functional collapse requires local and global action. Current Biology, 23, 912-918. https://doi.org/10.1016/j.cub.2013.04.020
  69. Kleypas, J. A., Mcmanus, J. W., & Meñez, L. A. B. (1999). Environmental limits to coral reef development: Where do we draw the line? American Zoologist, 39(1), 146-159. https://doi.org/10.2307/3884233
  70. Kline, D. I., Teneva, L., Okamoto, D. K., Schneider, K., Caldeira, K., Miard, T., … Hoegh-Guldberg, O. (2019). Living coral tissue slows skeletal dissolution related to ocean acidification. Nature Ecology & Evolution, 3(10), 1438-1444. https://doi.org/10.1038/s41559-019-0988-x
  71. Knowlton, N., & Jackson, J. B. C. (2008). Shifting baselines, local impacts, and global change on coral reefs. PLoS Biology, 6(2), e54. https://doi.org/10.1371/journal.pbio.0060054
  72. Kornder, N. A., Riegl, B. M., & Figueiredo, J. (2018). Thresholds and drivers of coral calcification responses to climate change. Global Change Biology, 24(11), 5084-5095. https://doi.org/10.1111/gcb.14431
  73. Kroon, F. J., Kuhnert, P. M., Henderson, B. L., Wilkinson, S. N., Kinsey-Henderson, A., Abbott, B., … Turner, R. D. R. (2012). River loads of suspended solids, nitrogen, phosphorus and herbicides delivered to the Great Barrier Reef lagoon. Marine Pollution Bulletin, 65(4-9), 167-181. https://doi.org/10.1016/j.marpolbul.2011.10.018
  74. Krueger, T., Horwitz, N., Bodin, J., Giovani, M.-E., Escrig, S., Meibom, A., & Fine, M. (2017). Common reef-building coral in the Northern Red Sea resistant to elevated temperature and acidification. Royal Society Open Science, 4, 170038. https://doi.org/10.1098/rsos.170038
  75. LaJeunesse, T. C., Parkinson, J. E., Gabrielson, P. W., Jeong, H. J., Reimer, J. D., Voolstra, C. R., & Santos, S. R. (2018). Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Current Biology, 28(16), 2570-2580.e6. https://doi.org/10.1016/j.cub.2018.07.008
  76. Langdon, C., Takahashi, T., Sweeney, C., Chipman, D., Goddard, J., Marubini, F., … Atkinson, M. J. (2000). Effect of calcium carbonate saturation state on the calcification rate of an experimental coral reef. Global Biogeochemical Cycles, 14(2), 639-654. https://doi.org/10.1029/1999GB001195
  77. Lauvset, S. K., Key, R. M., Olsen, A., Van Heuven, S., Velo, A., Lin, X., … Watelet, S. (2016). A new global interior ocean mapped climatology: The 1° × 1° GLODAP version 2. Earth System Science Data, 8(2), 325-340. https://doi.org/10.5194/essd-8-325-2016
  78. Leuning, R. (2002). Temperature dependence of two parameters in a photosynthesis model. Plant Cell and Environment, 25, 1205-1210. https://doi.org/10.1046/j.1365-3040.2002.00898.x
  79. Lirman, D., & Schopmeyer, S. (2016). Ecological solutions to reef degradation: Optimizing coral reef restoration in the Caribbean and Western Atlantic. PeerJ, 4, e2597. https://doi.org/10.7717/peerj.2597
  80. Locarnini, R. A., Mishonov, A. V., Baranova, O. K., Boyer, T. P., Zweng, M. M., Garcia, H. E., … Smolyar, I. V. (2019). World ocean atlas 2018, volume 1: Temperature. A. Mishonov, Technical Editor. NOAA Atlas NESDIS, 1(81), 52 pp.
  81. Marshall, A. T., & Clode, P. (2004). Calcification rate and the effect of temperature in a zooxanthellate and an azooxanthellate scleractinian reef coral. Coral Reefs, 23(2), 218-224. https://doi.org/10.1007/s00338-004-0369-y
  82. Martínez, M. L., Intralawan, A., Vázquez, G., Pérez-Maqueo, O., Sutton, P., & Landgrave, R. (2007). The coasts of our world: Ecological, economic and social importance. Ecological Economics, 63(2-3), 254-272. https://doi.org/10.1016/j.ecolecon.2006.10.022
  83. McCulloch, M. T., D’Olivo, J. P., Falter, J., Holcomb, M., & Trotter, J. A. (2017). Coral calcification in a changing World and the interactive dynamics of pH and DIC upregulation. Nature Communications, 8(May), 1-8. https://doi.org/10.1038/ncomms15686
  84. McWilliams, J. P., Côté, I. M., Gill, J. A., Sutherland, W. J., & Watkinson, A. R. (2005). Accelerating impacts of temperature-induced coral bleaching in the Caribbean. Ecology, 86(8), 2055-2060. https://doi.org/10.1890/04-1657
  85. Moberg, F., & Folke, C. (1999). Ecological goods and services of coral reef ecosystems. Ecological Economics, 29, 215-233. https://doi.org/10.1016/S0921-8009(99)00009-9
  86. Mollica, N. R., Guo, W., Cohen, A. L., Huang, K.-F., Foster, G. L., Donald, H. K., & Solow, A. R. (2018). Ocean acidification affects coral growth by reducing skeletal density. Proceedings of the National Academy of Sciences of the United States of America, 115(8), 1754-1759. https://doi.org/10.1073/pnas.1712806115
  87. Muscatine, L., & Pool, R. R. (1979). Regulation of numbers of intracellular algae. Proceedings of Royal Society of London B: Biological Sciences, 204(1155), 131-139. https://doi.org/10.1098/rspb.1979.0018
  88. Muscatine, L., & Porter, J. W. (1977). Reef corals: Mutualistic symbioses adapted to nutrient-poor environments. BioScience, 27(7), 454-460. https://doi.org/10.2307/1297526
  89. Nakamura, M., Ohki, S., Suzuki, A., & Sakai, K. (2011). Coral larvae under ocean acidification: Survival, metabolism, and metamorphosis. PLoS One, 6(1), 1-7. https://doi.org/10.1371/journal.pone.0014521
  90. Noonan, S. H. C., & Fabricius, K. E. (2016). Ocean acidification affects productivity but not the severity of thermal bleaching in some tropical corals. ICES Journal of Marine Science, 73(3,1), 715-726. https://doi.org/10.1093/icesjms/fsv127
  91. Ohde, S., & Mozaffar Hossain, M. M. (2004). Effect of CaCO3 (aragonite) saturation state of seawater on calcification of Porites coral. Geochemical Journal, 38(6), 613-621. https://doi.org/10.2343/geochemj.38.613
  92. Pauly, D. (1995). Anecdotes and the shifting baseline syndrole fisheries. Trends in Ecology & Evolution, 10(10), 430. https://doi.org/10.1016/s0169-5347(00)89171-5
  93. Pauly, D., Christensen, V., Guénette, S., Pitcher, T. J., Sumaila, U. R., Walters, C. J., … Zeller, D. (2002). Towards sustainability in world fisheries. Nature, 418(6898), 689-695. https://doi.org/10.1038/nature01017
  94. Pogoreutz, C., Rädecker, N., Cárdenas, A., Gärdes, A., Voolstra, C. R., & Wild, C. (2017). Sugar enrichment provides evidence for a role of nitrogen fixation in coral bleaching. Global Change Biology, 23(9), 3838-3848. https://doi.org/10.1111/gcb.13695
  95. Pörtner, H. O., & Knust, R. (2007). Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science, 315, 95-98. https://doi.org/10.1126/science.1135471
  96. Prada, F., Caroselli, E., Mengoli, S., Brizi, L., Fantazzini, P., Capaccioni, B., … Goffredo, S. (2017). Ocean warming and acidification synergistically increase coral mortality. Scientific Reports, 7(January), 40842. https://doi.org/10.1038/srep40842
  97. Price, N. N., Muko, S., Legendre, L., Steneck, R., van Oppen, M., Albright, R., … Edmunds, P. J. (2019). Global biogeography of coral recruitment: Tropical decline and subtropical increase. Marine Ecology Progress Series, 621, 1-17. https://doi.org/10.3354/meps12980
  98. Reynaud, S., Leclercq, N., Romaine-Liuod, S., Ferrier-Pages, C., Jaubert, J., & Gattuso, J.-P. (2003). Interacting effects of CO2 partial pressure and temperature on photosynthesis and calcification in a scleractinian coral. Global Change Biology, 9, 1660-1668. https://doi.org/10.1046/j.1529-8817.2003.00678.x
  99. Ries, J. B., Cohen, A. L., & McCorkle, D. C. (2009). Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology, 37(12), 1131-1134. https://doi.org/10.1130/G30210A.1
  100. Ries, J. B., Cohen, A. L., & McCorkle, D. C. (2010). A nonlinear calcification response to CO2-induced ocean acidification by the coral Oculina arbuscula. Coral Reefs, 29(3), 661-674. https://doi.org/10.1007/s00338-010-0632-3
  101. Rinkevich, B. (2005). Conservation of coral reefs through active restoration measures: Recent approaches and last decade progress. Environmental Science and Technology, 39(12), 4333-4342. https://doi.org/10.1021/es0482583
  102. Rinkevich, B. (2008). Management of coral reefs: We have gone wrong when neglecting active reef restoration. Marine Pollution Bulletin, 56(11), 1821-1824. https://doi.org/10.1016/j.marpolbul.2008.08.014
  103. Rinkevich, B. (2014). Rebuilding coral reefs: Does active reef restoration lead to sustainable reefs? Current Opinion in Environmental Sustainability, 7, 28-36. https://doi.org/10.1016/j.cosust.2013.11.018
  104. Rinkevich, B. (2015). Climate change and active reef restoration - Ways of constructing the “reefs of tomorrow”. Journal of Marine Science and Engineering, 3(1), 111-127. https://doi.org/10.3390/jmse3010111
  105. Sale, P. F. (2008). Management of coral reefs: Where we have gone wrong and what we can do about it. Marine Pollution Bulletin, 56(5), 805-809. https://doi.org/10.1016/j.marpolbul.2008.04.009
  106. Sawall, Y., Al-Sofyani, A., Hohn, S., Banguera-Hinestroza, E., Voolstra, C. R., & Wahl, M. (2015). Extensive phenotypic plasticity of a Red Sea coral over a strong latitudinal temperature gradient suggests limited acclimatization potential to warming. Scientific Reports, 5, 8940. https://doi.org/10.1038/srep08940
  107. Sawall, Y., Jompa, J., Litaay, M., Maddusila, A., & Richter, C. (2013). Coral recruitment and potential recovery of eutrophied and blast fishing impacted reefs in Spermonde Archipelago, Indonesia. Marine Pollution Bulletin, 74(1), 374-382. https://doi.org/10.1016/j.marpolbul.2013.06.022
  108. Selig, E. R., Casey, K. S., & Bruno, J. F. (2012). Temperature-driven coral decline: The role of marine protected areas. Global Change Biology, 18(5), 1561-1570. https://doi.org/10.1111/j.1365-2486.2012.02658.x
  109. Selkoe, K. A., Halpern, B. S., Ebert, C. M., Franklin, E. C., Selig, E. R., Casey, K. S., … Toonen, R. J. (2009). A map of human impacts to a ‘pristine’ coral reef ecosystem, the Papahānaumokuākea Marine National Monument. Coral Reefs, 28(3), 635-650. https://doi.org/10.1007/s00338-009-0490-z
  110. Spurgeon, J. (1999). The socio-economic costs and benefits of coastal habitat rehabilitation and creation. Marine Pollution Bulletin, 37(8-12), 373-382. https://doi.org/10.1016/S0025-326X(99)00074-0
  111. Tewksbury, J. J., Huey, R. B., & Deutsch, C. A. (2008). Putting the heat on tropical animals. Science, 320(5881), 1296-1297. https://doi.org/10.1126/science.1159328
  112. Todd, P. A., Ong, X., & Chou, L. M. (2010). Impacts of pollution on marine life in Southeast Asia. Biodiversity and Conservation, 19(4), 1063-1082. https://doi.org/10.1007/s10531-010-9778-0
  113. van Hooidonk, R., Maynard, J. A., Manzello, D., & Planes, S. (2014). Opposite latitudinal gradients in projected ocean acidification and bleaching impacts on coral reefs. Global Change Biology, 20(1), 103-112. https://doi.org/10.1111/gcb.12394
  114. van Hooidonk, R., Maynard, J. A., & Planes, S. (2013). Temporary refugia for coral reefs in a warming world. Nature Climate Change, 3(5), 508-511. https://doi.org/10.1038/nclimate1829
  115. van Oppen, M. J. H., Oliver, J. K., Putnam, H. M., & Gates, R. D. (2015). Building coral reef resilience through assisted evolution. Proceedings of the National Academy of Sciences of the United States of America, 112(8), 2307-2313. https://doi.org/10.1073/pnas.1422301112
  116. van Woesik, R., van Woesik, K., van Woesik, L., & van Woesik, S. (2014). Effects of ocean acidification on the dissolution rates of reef-coral skeletons. PeerJ, 2014(1), 1-15. https://doi.org/10.7717/peerj.208
  117. Venn, A. A., Tambutté, E., Holcomb, M., Laurent, J., Allemand, D., & Tambutté, S. (2013). Impact of seawater acidification on pH at the tissue-skeleton interface and calcification in reef corals. Proceedings of the National Academy of Sciences of the United States of America, 110(5), 1634-1639. https://doi.org/10.1073/pnas.1216153110
  118. Vermeij, M. J. A., van Moorselaar, I., Engelhard, S., Hörnlein, C., Vonk, S. M., & Visser, P. M. (2010). The effects of nutrient enrichment and herbivore abundance on the ability of turf algae to overgrow coral in the Caribbean. PLoS One, 5(12), 1-8. https://doi.org/10.1371/journal.pone.0014312
  119. Voss, J. D., & Richardson, L. L. (2006). Nutrient enrichment enhances black band disease progression in corals. Coral Reefs, 25(4), 569-576. https://doi.org/10.1007/s00338-006-0131-8
  120. Wall, C. B., Fan, T. Y., & Edmunds, P. J. (2013). Ocean acidification has no effect on thermal bleaching in the coral Seriatopora caliendrum. Coral Reefs, 33(1), 119-130. https://doi.org/10.1007/s00338-013-1085-2
  121. Wang, G., Garcia, D., Liu, Y., de Jeu, R., & Dolman, A. J. (2012). A three-dimensional gap filling method for large geophysical datasets: Application to global satellite soil moisture observations. Environmental Modelling and Software, 30, 139-142. https://doi.org/10.1016/j.envsoft.2011.10.015
  122. Wanninkhof, R., Pierrot, D., Sullivan, K., Barbero, L., & Trinanes, J. (2020). A 17-year dataset of surface water fugacity of CO2, along with calculated pH, Aragonite saturation state, and air-sea CO2 fluxes in the Northern Caribbean Sea. Earth System Science Data Discussions, 1-37, https://doi.org/10.5194/essd-2019-245
  123. Webster, N. S., Uthicke, S., Botté, E. S., Flores, F., & Negri, A. P. (2013). Ocean acidification reduces induction of coral settlement by crustose coralline algae. Global Change Biology, 19(1), 303-315. https://doi.org/10.1111/gcb.12008
  124. Wiedenmann, J., D’Angelo, C., Smith, E. G., Hunt, A. N., Legiret, F.-E., Postle, A. D., & Achterberg, E. P. (2013). Nutrient enrichment can increase the susceptibility of reef corals to bleaching. Nature Climate Change, 3(2), 160-164. https://doi.org/10.1038/nclimate1661
  125. Wisshak, M., Schönberg, C. H. L., Form, A., & Freiwald, A. (2012). Ocean acidification accelerates reef bioerosion. PLoS One, 7(4), 1-10. https://doi.org/10.1371/journal.pone.0045124
  126. Wooldridge, S. A. (2009). Water quality and coral bleaching thresholds: Formalising the linkage for the inshore reefs of the Great Barrier Reef, Australia. Marine Pollution Bulletin, 58(5), 745-751. https://doi.org/10.1016/j.marpolbul.2008.12.013
  127. Zaneveld, J. R., Burkepile, D. E., Shantz, A. A., Pritchard, C. E., McMinds, R., Payet, J. P., … Thurber, R. V. (2016). Overfishing and nutrient pollution interact with temperature to disrupt coral reefs down to microbial scales. Nature Communications, 7(May), 1-12. https://doi.org/10.1038/ncomms11833

Grants

  1. /China Scholarship Council

MeSH Term

Animals
Anthozoa
Climate Change
Coral Reefs
Ecosystem
Eutrophication
Hydrogen-Ion Concentration
Oceans and Seas

Word Cloud

Created with Highcharts 10.0.0globalstressorsreefscorallocalreefincreaseenvironmentalhabitatsuitability0willtemporaryrefugiaeutrophicationtemperatureΩnitrateconcentrationphosphateworldwidecanaffectoceanwarmingacidificationCoralthreatenedYetappearresponddifferentlydifferentUsingdatasetoccurrenceproxylong-termadaptationcoralsconditionscombinationdatashowwarming:seasurfaceacidification:aragonitesaturationstateeutrophication:influenceanalyserelativedistancecommunitiesregionaloptimaadditioncalculateexpectedchangeacrosstropicsrelation1°C02 μmol/L01 μmol/Ldecrease04findingsreveal6%unaffectedthusactLocaldrivennutrient22%whereas11%remaining61%simultaneouslyaffectedAppropriatewastewatertreatmentsmitigateareas28%allowingus'buytime'internationalagreementsfoundabateVulnerability

Similar Articles

Cited By (9)