Tumorigenic effects of TLX overexpression in HEK 293T cells.

Toshima Z Parris, Dzeneta Vizlin-Hodzic, Susanne Salmela, Keiko Funa
Author Information
  1. Toshima Z Parris: Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden. ORCID
  2. Dzeneta Vizlin-Hodzic: Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
  3. Susanne Salmela: Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
  4. Keiko Funa: Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.

Abstract

BACKGROUND: The human orphan receptor TLX (NR2E1) is a key regulator of neurogenesis, adult stem cell maintenance, and tumorigenesis. However, little is known about the genetic and transcriptomic events that occur following TLX overexpression in human cell lines.
AIMS: Here, we used cytogenetics and RNA sequencing to investigate the effect of TLX overexpression with an inducible vector system in the HEK 293T cell line.
METHODS AND RESULTS: Conventional spectral karyotyping was used to identify chromosomal abnormalities, followed by fluorescence in situ hybridization (FISH) analysis on chromosome spreads to assess TLX DNA copy number. Illumina paired-end whole transcriptome sequencing was then performed to characterize recurrent genetic variants (single nucleotide polymorphisms (SNPs) and indels), expressed gene fusions, and gene expression profiles. Lastly, flow cytometry was used to analyze cell cycle distribution. Intriguingly, we show that upon transfection with a vector containing the human TLX gene (eGFP-hTLX), an isochromosome forms on the long arm of chromosome 6, thereby resulting in DNA gain of the TLX locus (6q21) and upregulation of TLX. Induction of the eGFP-hTLX vector further increased TLX expression levels, leading to G0-G1 cell cycle arrest, genetic aberrations, modulation of gene expression patterns, and crosstalk with other nuclear receptors (AR, ESR1, ESR2, NR1H4, and NR3C2). We identified a 49-gene signature associated with central nervous system (CNS) development and carcinogenesis, in addition to potentially cancer-driving gene fusions (LARP1-CNOT8 and NSL1-ZDBF2) and deleterious genetic variants (frameshift insertions in the CTSH, DBF4, POSTN, and WDR78 genes).
CONCLUSION: Taken together, these findings illustrate that TLX may play a pivotal role in tumorigenesis via genomic instability and perturbation of cancer-related processes.

Keywords

References

  1. Cell Rep. 2018 Apr 3;23(1):227-238.e3 [PMID: 29617662]
  2. Cell Reprogram. 2011 Feb;13(1):13-27 [PMID: 21235343]
  3. Nucleic Acids Res. 1992 Aug 25;20(16):4369-70 [PMID: 1508730]
  4. Biochem Biophys Res Commun. 2009 Sep 4;386(4):671-5 [PMID: 19555662]
  5. Nat Commun. 2014 Sep 03;5:4767 [PMID: 25182477]
  6. Nature. 2015 Mar 26;519(7544):477-81 [PMID: 25561175]
  7. Mol Endocrinol. 2008 Jan;22(1):56-64 [PMID: 17901127]
  8. Transl Psychiatry. 2017 Jan 24;7(1):e1010 [PMID: 28117838]
  9. Exp Cell Res. 2016 May 1;343(2):118-125 [PMID: 27048878]
  10. Nat Rev Genet. 2018 Mar;19(3):160-174 [PMID: 29279606]
  11. Proc Natl Acad Sci U S A. 2007 Sep 25;104(39):15282-7 [PMID: 17873065]
  12. Biochim Biophys Acta. 2015 Feb;1849(2):210-6 [PMID: 24930777]
  13. Nature. 2004 Jan 1;427(6969):78-83 [PMID: 14702088]
  14. Science. 2001 Dec 7;294(5549):2186-9 [PMID: 11691952]
  15. Cancer Rep (Hoboken). 2019 Oct;2(5):e1204 [PMID: 32721119]
  16. Behav Brain Res. 2002 May 14;132(2):145-58 [PMID: 11997145]
  17. Oncogene. 2018 Jun;37(25):3340-3355 [PMID: 29555975]
  18. Biol Open. 2012 Jun 15;1(6):527-35 [PMID: 23213445]
  19. Mol Cancer Res. 2005 Mar;3(3):139-50 [PMID: 15798094]
  20. PLoS One. 2012;7(2):e32426 [PMID: 22384245]
  21. Cell Stem Cell. 2014 Aug 7;15(2):185-98 [PMID: 24835569]
  22. Proc Natl Acad Sci U S A. 2006 Jan 3;103(1):111-6 [PMID: 16373498]
  23. Trends Genet. 2001 Oct;17(10):554-6 [PMID: 11585645]
  24. Front Cell Neurosci. 2014 Nov 27;8:396 [PMID: 25505873]
  25. Nature. 2008 Feb 21;451(7181):1004-7 [PMID: 18235445]
  26. Nat Cell Biol. 2010 Jan;12(1):31-40; sup pp 1-9 [PMID: 20010817]
  27. Nat Genet. 2000 May;25(1):25-9 [PMID: 10802651]
  28. Biochem Biophys Res Commun. 2005 Mar 4;328(1):49-56 [PMID: 15670749]
  29. Development. 1995 Mar;121(3):839-53 [PMID: 7720587]
  30. Mol Cells. 2010 Nov;30(5):403-8 [PMID: 20814749]
  31. Cell Signal. 2017 Jan;30:104-117 [PMID: 27890558]
  32. Nucleic Acids Res. 2015 Jan;43(Database issue):D1049-56 [PMID: 25428369]
  33. Nat Commun. 2016 Feb 03;7:10637 [PMID: 26838672]
  34. J Pathol. 2015 May;236(1):103-15 [PMID: 25557355]
  35. Nature. 2011 Mar 24;471(7339):532-6 [PMID: 21399625]
  36. Gene. 2015 Sep 15;569(2):182-90 [PMID: 26026906]
  37. Neoplasma. 2017;64(1):48-55 [PMID: 27881004]
  38. Endocr Relat Cancer. 2018 Jan;25(1):35-50 [PMID: 29042395]
  39. Mol Cell Biol. 2012 Dec;32(23):4811-20 [PMID: 23028043]
  40. Nature. 1994 Aug 4;370(6488):375-9 [PMID: 8047143]
  41. Genes Dev. 2008 Sep 15;22(18):2473-8 [PMID: 18794344]
  42. Dev Biol. 2007 Jan 1;301(1):14-26 [PMID: 17123502]
  43. Genes Dev. 2006 May 15;20(10):1308-20 [PMID: 16702404]
  44. Genes Dev. 2010 Apr 1;24(7):683-95 [PMID: 20360385]
  45. J Neurosci. 2004 Sep 15;24(37):8124-34 [PMID: 15371513]
  46. Oncotarget. 2018 May 8;9(35):24140-24154 [PMID: 29844878]
  47. Gigascience. 2013 Jun 25;2(1):9 [PMID: 23800020]
  48. Oncogene. 1999 May 27;18(21):3226-34 [PMID: 10359528]
  49. Oncotarget. 2015 Aug 28;6(25):21685-703 [PMID: 26280373]
  50. J Clin Invest. 2006 Feb;116(2):369-77 [PMID: 16424942]
  51. Cell Death Dis. 2014 Oct 30;5:e1502 [PMID: 25356871]

MeSH Term

Cell Proliferation
Cell Transformation, Neoplastic
Frameshift Mutation
G1 Phase Cell Cycle Checkpoints
Gene Expression Regulation, Neoplastic
Genomic Instability
HEK293 Cells
Humans
Orphan Nuclear Receptors
RNA-Seq
Up-Regulation

Chemicals

NR2E1 protein, human
Orphan Nuclear Receptors

Word Cloud

Created with Highcharts 10.0.0TLXcellgenegenetichumanoverexpressionusedvectorexpressionNR2E1tumorigenesissequencingsystemHEK293TchromosomeDNAvariantsfusionscycleeGFP-hTLXnuclearreceptorsinstabilityBACKGROUND:orphanreceptorkeyregulatorneurogenesisadultstemmaintenanceHoweverlittleknowntranscriptomiceventsoccurfollowinglinesAIMS:cytogeneticsRNAinvestigateeffectinduciblelineMETHODSANDRESULTS:ConventionalspectralkaryotypingidentifychromosomalabnormalitiesfollowedfluorescencesituhybridizationFISHanalysisspreadsassesscopynumberIlluminapaired-endwholetranscriptomeperformedcharacterizerecurrentsinglenucleotidepolymorphismsSNPsindelsexpressedprofilesLastlyflowcytometryanalyzedistributionIntriguinglyshowupontransfectioncontainingisochromosomeformslongarm6therebyresultinggainlocus6q21upregulationInductionincreasedlevelsleadingG0-G1arrestaberrationsmodulationpatternscrosstalkARESR1ESR2NR1H4NR3C2identified49-genesignatureassociatedcentralnervousCNSdevelopmentcarcinogenesisadditionpotentiallycancer-drivingLARP1-CNOT8NSL1-ZDBF2deleteriousframeshiftinsertionsCTSHDBF4POSTNWDR78genesCONCLUSION:Takentogetherfindingsillustratemayplaypivotalroleviagenomicperturbationcancer-relatedprocessesTumorigeniceffectscellscancergenome

Similar Articles

Cited By