Comparative Analysis of the Transcriptome and Distribution of Putative SNPs in Two Rainbow Trout () Breeding Strains by Using Next-Generation Sequencing.

Lidia de Los Ríos-Pérez, Ronald Marco Brunner, Frieder Hadlich, Alexander Rebl, Carsten Kühn, Dörte Wittenburg, Tom Goldammer, Marieke Verleih
Author Information
  1. Lidia de Los Ríos-Pérez: Institute of Genetics and Biometry, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany. ORCID
  2. Ronald Marco Brunner: Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany.
  3. Frieder Hadlich: Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany.
  4. Alexander Rebl: Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany. ORCID
  5. Carsten Kühn: Institute of Fisheries, Mecklenburg-Vorpommern Research Centre for Agriculture and Fisheries (LFA MV), 18069 Rostock, Germany.
  6. Dörte Wittenburg: Institute of Genetics and Biometry, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany.
  7. Tom Goldammer: Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany. ORCID
  8. Marieke Verleih: Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany. ORCID

Abstract

Selective breeding can significantly improve the establishment of sustainable and profitable aquaculture fish farming. For rainbow trout (), one of the main aquaculture coldwater species in Europe, a variety of selected hatchery strains are commercially available. In this study, we investigated the genetic variation between the local Born strain, selected for survival, and the commercially available Silver Steelhead strain, selected for growth. We sequenced the transcriptome of six tissues (gills, head kidney, heart, liver, spleen, and white muscle) from eight healthy individuals per strain, using RNA-seq technology to identify strain-specific gene-expression patterns and single nucleotide polymorphisms (SNPs). In total, 1760 annotated genes were differentially expressed across all tissues. Pathway analysis assigned them to different gene networks. We also identified a set of SNPs, which are heterozygous for one of the two breeding strains: 1229 of which represent polymorphisms over all tissues and individuals. Our data indicate a strong genetic differentiation between Born and Silver Steelhead trout, despite the relatively short time of evolutionary separation of the two breeding strains. The results most likely reflect their specifically adapted genotypes and might contribute to the understanding of differences regarding their robustness toward high stress and pathogenic challenge described in former studies.

Keywords

References

  1. Mar Biotechnol (NY). 2014 Jun;16(3):333-48 [PMID: 24122123]
  2. J Cell Sci. 2010 Aug 1;123(Pt 15):2527-32 [PMID: 20940128]
  3. Fish Shellfish Immunol. 2015 Jan;42(1):98-107 [PMID: 25449374]
  4. Front Genet. 2018 Apr 24;9:147 [PMID: 29740479]
  5. Mol Ecol. 2005 Nov;14(13):4193-203 [PMID: 16262869]
  6. BMC Genomics. 2017 Aug 7;18(1):582 [PMID: 28784089]
  7. Nat Commun. 2016 Jun 02;7:11757 [PMID: 27249958]
  8. Drug Discov Today. 2020 Feb;25(2):330-343 [PMID: 31622747]
  9. Nature. 2017 Nov 23;551(7681):427-431 [PMID: 29168817]
  10. Elife. 2019 Jul 19;8: [PMID: 31322500]
  11. Cell. 1997 Feb 7;88(3):323-31 [PMID: 9039259]
  12. Mar Biotechnol (NY). 2015 Oct;17(5):576-92 [PMID: 26017776]
  13. DNA Cell Biol. 2004 May;23(5):311-24 [PMID: 15169610]
  14. Genome Biol. 2013 Jul 29;14(7):126 [PMID: 23899167]
  15. Nature. 2010 Oct 28;467(7319):1061-73 [PMID: 20981092]
  16. Mol Biol Rep. 2013 Feb;40(2):1955-66 [PMID: 23086280]
  17. Mar Genomics. 2013 Mar;9:33-8 [PMID: 23067785]
  18. Nat Commun. 2014 Apr 22;5:3657 [PMID: 24755649]
  19. BMC Genomics. 2017 Feb 20;18(1):191 [PMID: 28219347]
  20. Methods Mol Biol. 2009;578:23-39 [PMID: 19768585]
  21. Mol Ecol Resour. 2015 May;15(3):662-72 [PMID: 25294387]
  22. Nat Rev Mol Cell Biol. 2007 Apr;8(4):275-83 [PMID: 17380161]
  23. BMC Genomics. 2006 Jul 27;7:192 [PMID: 16872523]
  24. BMC Cancer. 2019 Apr 16;19(1):359 [PMID: 30991970]
  25. Evolution. 1975 Mar;29(1):1-10 [PMID: 28563291]
  26. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  27. PLoS One. 2014 Mar 20;9(3):e92502 [PMID: 24651578]
  28. Vet Immunol Immunopathol. 2012 Jan 15;145(1-2):305-15 [PMID: 22196148]
  29. Nat Genet. 2004 Aug;36(8):861-6 [PMID: 15247918]
  30. J Genet. 2017 Sep;96(4):701-706 [PMID: 28947720]
  31. Nat Biotechnol. 2015 Mar;33(3):290-5 [PMID: 25690850]
  32. Genome Biol. 2017 Jun 14;18(1):111 [PMID: 28615063]
  33. Bioinformatics. 2011 Feb 1;27(3):303-10 [PMID: 21149341]
  34. Mar Genomics. 2016 Apr;26:41-50 [PMID: 26723557]
  35. Mol Ecol. 2019 Jun;28(12):3012-3024 [PMID: 31125994]
  36. Nature. 1992 Jul 2;358(6381):15-6 [PMID: 1614522]
  37. Gene. 2016 Feb 1;576(2 Pt 1):637-43 [PMID: 26476292]
  38. BMC Genet. 2008 Dec 16;9:87 [PMID: 19087266]
  39. BMC Genomics. 2016 Jan 15;17:60 [PMID: 26768650]
  40. BMC Genomics. 2010 Mar 22;11:191 [PMID: 20307277]
  41. Biochim Biophys Acta. 2013 May;1830(5):3143-53 [PMID: 22995213]
  42. Int J Mol Sci. 2013 Mar 12;14(3):5694-711 [PMID: 23481633]
  43. Bioinformatics. 2013 Jan 1;29(1):15-21 [PMID: 23104886]
  44. Nat Methods. 2015 Apr;12(4):357-60 [PMID: 25751142]
  45. Front Genet. 2018 Sep 19;9:387 [PMID: 30283492]
  46. Curr Protoc Bioinformatics. 2013;43:11.10.1-11.10.33 [PMID: 25431634]
  47. Biochim Biophys Acta. 2014 Oct;1842(10):1910-1922 [PMID: 24667321]
  48. Biology (Basel). 2015 Nov 27;4(4):860-80 [PMID: 26633533]
  49. Mar Biotechnol (NY). 2013 Aug;15(4):445-60 [PMID: 23547003]
  50. Sci Rep. 2018 Aug 14;8(1):12111 [PMID: 30108261]
  51. J Gen Virol. 2016 Apr;97(4):825-838 [PMID: 26763980]
  52. FEBS Lett. 2008 Jun 18;582(14):1977-86 [PMID: 18342629]
  53. PLoS One. 2011;6(6):e20660 [PMID: 21674007]
  54. Gac Med Mex. 2017 Mar - Apr;153(2):238-250 [PMID: 28474710]

MeSH Term

Animals
Gene Regulatory Networks
Genetic Markers
High-Throughput Nucleotide Sequencing
Molecular Sequence Annotation
Oncorhynchus mykiss
Polymorphism, Single Nucleotide
Species Specificity
Transcriptome

Chemicals

Genetic Markers

Word Cloud

Created with Highcharts 10.0.0breedingaquaculturetroutselectedstraintissuesSNPsrainbowonestrainscommerciallyavailablegeneticBornSilverSteelheadtranscriptomeindividualsRNA-seqsinglenucleotidepolymorphismstwoSelectivecansignificantlyimproveestablishmentsustainableprofitablefishfarmingmaincoldwaterspeciesEuropevarietyhatcherystudyinvestigatedvariationlocalsurvivalgrowthsequencedsixgillsheadkidneyheartliverspleenwhitemuscleeighthealthyperusingtechnologyidentifystrain-specificgene-expressionpatternstotal1760annotatedgenesdifferentiallyexpressedacrossPathwayanalysisassigneddifferentgenenetworksalsoidentifiedsetheterozygousstrains:1229representdataindicatestrongdifferentiationdespiterelativelyshorttimeevolutionaryseparationresultslikelyreflectspecificallyadaptedgenotypesmightcontributeunderstandingdifferencesregardingrobustnesstowardhighstresspathogenicchallengedescribedformerstudiesComparativeAnalysisTranscriptomeDistributionPutativeTwoRainbowTroutBreedingStrainsUsingNext-GenerationSequencingSNPp53selectivepolymorphism

Similar Articles

Cited By