Considering Alternate Pathways of Drinking-Water Contamination: Evidence of Risk Substitution from Arsenic Mitigation Programs in Rural Bangladesh.

Varun Goel, Griffin J Bell, Sumati Sridhar, Md Sirajul Islam, Md Yunus, Md Taslim Ali, Md Alfazal Khan, Md Nurul Alam, Asg Faruque, Md Masnoon Kabir, Shahabuddin Babu, Katerina Brandt, Victoria Shelus, Mark D Sobsey, Michael Emch
Author Information
  1. Varun Goel: Department of Geography, University of North Carolina-Chapel Hill, Chapel Hill, NC 27514, USA. ORCID
  2. Griffin J Bell: Gillings School of Global Public Health, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA. ORCID
  3. Sumati Sridhar: Department of Statistics, University of North Carolina-Chapel Hill, Chapel Hill, NC 27514, USA.
  4. Md Sirajul Islam: International Centre for Diarrhoeal Disease Research (icddr,b), Dhaka 1212, Bangladesh.
  5. Md Yunus: International Centre for Diarrhoeal Disease Research (icddr,b), Dhaka 1212, Bangladesh.
  6. Md Taslim Ali: International Centre for Diarrhoeal Disease Research (icddr,b), Dhaka 1212, Bangladesh.
  7. Md Alfazal Khan: International Centre for Diarrhoeal Disease Research (icddr,b), Dhaka 1212, Bangladesh.
  8. Md Nurul Alam: International Centre for Diarrhoeal Disease Research (icddr,b), Dhaka 1212, Bangladesh.
  9. Asg Faruque: International Centre for Diarrhoeal Disease Research (icddr,b), Dhaka 1212, Bangladesh. ORCID
  10. Md Masnoon Kabir: International Centre for Diarrhoeal Disease Research (icddr,b), Dhaka 1212, Bangladesh. ORCID
  11. Shahabuddin Babu: International Centre for Diarrhoeal Disease Research (icddr,b), Dhaka 1212, Bangladesh.
  12. Katerina Brandt: Department of Geography, University of North Carolina-Chapel Hill, Chapel Hill, NC 27514, USA. ORCID
  13. Victoria Shelus: Gillings School of Global Public Health, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA.
  14. Mark D Sobsey: Gillings School of Global Public Health, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA.
  15. Michael Emch: Department of Geography, University of North Carolina-Chapel Hill, Chapel Hill, NC 27514, USA. ORCID

Abstract

Deep tubewells are a key component of arsenic mitigation programs in rural Bangladesh. Compared to widely prevalent shallow tubewells, deep tubewells reduce ground-water arsenic exposure and provide better microbial water quality at source. However, the benefits of clean drinking-water at these more distant sources may be abated by higher levels of microbial contamination at point-of-use. One such potential pathway is the use of contaminated surface water for washing drinking-water storage containers. The aim of this study is to compare the prevalence of surface water use for washing drinking-water storage containers among deep and shallow tubewell users in a cohort of 499 rural residents in Matlab, Bangladesh. We employ a multi-level logistic regression model to measure the effect of tubewell type and ownership status on the odds of washing storage containers with surface water. Results show that deep tubewell users who do not own their drinking-water tubewell, have 6.53 times the odds [95% CI: 3.56, 12.00] of using surface water for cleaning storage containers compared to shallow tubewell users, who own their drinking-water source. Even deep tubewell users who own a private well within walking distance have 2.53 [95% CI: 1.36, 4.71] times the odds of using surface water compared to their shallow tubewell counterparts. These results highlight the need for interventions to limit risk substitution, particularly the increased use of contaminated surface water when access to drinking water is reduced. Increasing ownership of and proximity to deep tubewells, although crucial, is insufficient to achieve equity in safe drinking-water access across rural Bangladesh.

Keywords

References

  1. J Appl Microbiol. 2007 Jul;103(1):80-7 [PMID: 17584454]
  2. Am J Trop Med Hyg. 2007 Oct;77(4):699-704 [PMID: 17978074]
  3. PLoS One. 2013;8(1):e53640 [PMID: 23326477]
  4. Genome Announc. 2014 Nov 20;2(6): [PMID: 25414497]
  5. Rev Environ Health. 2011;26(1):71-8 [PMID: 21714384]
  6. J Water Sanit Hyg Dev. 2016 Mar;6(1):142-150 [PMID: 27087915]
  7. Bull World Health Organ. 2014 Apr 1;92(4):283-9 [PMID: 24700996]
  8. Am J Trop Med Hyg. 2015 Nov;93(5):904-911 [PMID: 26438031]
  9. Environ Health. 2011 Dec 22;10:109 [PMID: 22192445]
  10. Sci Total Environ. 2014 Aug 1;488-489:477-83 [PMID: 24377677]
  11. J Environ Manage. 2010 Jun;91(6):1316-23 [PMID: 20207069]
  12. Ground Water. 2011 Jan-Feb;49(1):111-23 [PMID: 20236332]
  13. Int J Epidemiol. 2017 Jun 1;46(3):809-816 [PMID: 28637343]
  14. Bull World Health Organ. 2011 Jul 1;89(7):521-7 [PMID: 21734766]
  15. J Appl Microbiol. 2008 Oct;105(4):1002-8 [PMID: 18422953]
  16. Sci Rep. 2013;3:2195 [PMID: 23873074]
  17. Proc Natl Acad Sci U S A. 2008 Jun 24;105(25):8531-6 [PMID: 18562284]
  18. Environ Sci Technol. 2011 Feb 15;45(4):1199-205 [PMID: 21226536]
  19. Appl Environ Microbiol. 2001 Jul;67(7):3328-30 [PMID: 11425764]
  20. Trop Geogr Med. 1989 Apr;41(2):138-40 [PMID: 2527428]
  21. PLoS One. 2015 Mar 27;10(3):e0121907 [PMID: 25816342]
  22. PLoS One. 2011;6(12):e29593 [PMID: 22216326]
  23. Trop Med Health. 2019 May 2;47:29 [PMID: 31073272]
  24. Environ Sci Technol. 2003 Jan 15;37(2):229-34 [PMID: 12564892]
  25. Sci Total Environ. 2019 Apr 1;659:1577-1584 [PMID: 31096367]
  26. Bull World Health Organ. 2002;80(9):732-7 [PMID: 12378292]
  27. Public Health. 1998 Sep;112(5):317-21 [PMID: 9807928]
  28. Sci Total Environ. 2013 Jun 1;454-455:627-38 [PMID: 23584139]
  29. Am J Public Health. 2013 Jul;103(7):1287-91 [PMID: 23409905]
  30. J Health Psychol. 2014 Dec;19(12):1483-98 [PMID: 23864069]
  31. Trop Med Int Health. 1996 Feb;1(1):27-34 [PMID: 8673819]
  32. Science. 2002 Nov 22;298(5598):1602-6 [PMID: 12446905]
  33. Science. 2010 May 28;328(5982):1123-7 [PMID: 20508123]
  34. Am J Trop Med Hyg. 2019 Aug;101(2):304-309 [PMID: 31264563]
  35. Heliyon. 2019 Aug 02;5(8):e02145 [PMID: 31406938]
  36. Trop Med Int Health. 2002 Jul;7(7):604-9 [PMID: 12100444]
  37. Science. 2006 Dec 15;314(5806):1687-8 [PMID: 17170279]
  38. Environ Health Perspect. 2008 Nov;116(11):1533-40 [PMID: 19057707]
  39. Bull World Health Organ. 2003;81(9):632-8 [PMID: 14710504]
  40. Trop Med Int Health. 2004 Feb;9(2):187-91 [PMID: 15040554]
  41. Sci Total Environ. 2007 Jul 1;379(2-3):167-75 [PMID: 17258792]
  42. Trop Med Int Health. 2014 Feb;19(2):186-94 [PMID: 24252094]
  43. Bull World Health Organ. 2012 Nov 1;90(11):839-46 [PMID: 23226896]

Grants

  1. P2C HD050924/NICHD NIH HHS
  2. T32 HD007168/NICHD NIH HHS

MeSH Term

Arsenic
Bangladesh
Environmental Monitoring
Groundwater
Humans
Water Pollutants, Chemical
Water Supply

Chemicals

Water Pollutants, Chemical
Arsenic

Word Cloud

Created with Highcharts 10.0.0watertubewelldrinking-watersurfaceBangladeshdeepstoragetubewellsshallowcontainersusersarsenicruralusewashingoddsmitigationmicrobialqualitysourcecontaminatedownership53times[95%CI:usingcomparedrisksubstitutionaccessdrinkingDeepkeycomponentprogramsComparedwidelyprevalentreduceground-waterexposureprovidebetterHoweverbenefitscleandistantsourcesmayabatedhigherlevelscontaminationpoint-of-useOnepotentialpathwayaimstudycompareprevalenceamongcohort499residentsMatlabemploymulti-levellogisticregressionmodelmeasureeffecttypestatusResultsshow63561200]cleaningEvenprivatewellwithinwalkingdistance2136471]counterpartsresultshighlightneedinterventionslimitparticularlyincreasedreducedIncreasingproximityalthoughcrucialinsufficientachieveequitysafeacrossConsideringAlternatePathwaysDrinking-WaterContamination:EvidenceRiskSubstitutionArsenicMitigationProgramsRuralhousehold

Similar Articles

Cited By