Gold-based Inorganic Nanohybrids for Nanomedicine Applications.

Xianguang Ding, Dan Li, Jiang Jiang
Author Information
  1. Xianguang Ding: Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
  2. Dan Li: Department of Dermatology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
  3. Jiang Jiang: i-Lab and Division of Nanobiomedicine, CAS Key Laboratory of Nano-Bio Interface, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.

Abstract

Noble metal Au nanoparticles have attracted extensive interests in the past decades, due to their size and morphology dependent localized surface plasmon resonances. Their unique optical property, high chemical stability, good biocompatibility, and easy functionalization make them promising candidates for a variety of biomedical applications, including bioimaging, biosensing, and cancer therapy. With the intention of enhancing their optical response in the near infrared window and endowing them with additional magnetic properties, Au nanoparticles have been integrated with other functional nanomaterials that possess complementary attributes, such as copper chalcogenides and magnetic metal oxides. The as constructed hybrid nanostructures are expected to exhibit unconventional properties compared to their separate building units, due to nanoscale interactions between materials with different physicochemical properties, thus broadening the application scope and enhancing the overall performance of the hybrid nanostructures. In this review, we summarize some recent progresses in the design and synthesis of noble metal Au-based hybrid inorganic nanostructures for nanomedicine applications, and the potential and challenges for their clinical translations.

Keywords

References

  1. Biomaterials. 2016 Nov;106:144-66 [PMID: 27561885]
  2. ACS Appl Mater Interfaces. 2019 Oct 30;11(43):39613-39623 [PMID: 31613607]
  3. Biomaterials. 2013 Jul;34(21):5200-9 [PMID: 23583039]
  4. ACS Nano. 2011 Jun 28;5(6):4712-9 [PMID: 21648441]
  5. Adv Mater. 2018 Dec;30(49):e1802309 [PMID: 30133009]
  6. Chem Commun (Camb). 2019 Apr 18;55(33):4813-4816 [PMID: 30946395]
  7. Bioengineering (Basel). 2019 Jun 10;6(2): [PMID: 31185667]
  8. Int J Nanomedicine. 2019 Jul 03;14:4781-4800 [PMID: 31308658]
  9. Nanomaterials (Basel). 2019 May 20;9(5): [PMID: 31137492]
  10. Biomaterials. 2018 Mar;158:23-33 [PMID: 29274527]
  11. Nanoscale. 2015 Dec 7;7(45):18872-7 [PMID: 26468627]
  12. ACS Nano. 2017 Apr 25;11(4):3776-3785 [PMID: 28394555]
  13. J Drug Deliv. 2012;2012:751075 [PMID: 22007307]
  14. Nanoscale. 2017 Jul 13;9(27):9467-9480 [PMID: 28660946]
  15. ACS Nano. 2015 Oct 27;9(10):10335-46 [PMID: 26331394]
  16. Adv Mater. 2017 Aug;29(32): [PMID: 28643452]
  17. Nat Methods. 2016 Jul 28;13(8):639-50 [PMID: 27467727]
  18. Small. 2019 Dec;15(51):e1903895 [PMID: 31747128]
  19. Nano Lett. 2005 Apr;5(4):709-11 [PMID: 15826113]
  20. J Am Chem Soc. 2019 May 22;141(20):8158-8170 [PMID: 31053030]
  21. J Biomed Nanotechnol. 2015 Aug;11(8):1442-50 [PMID: 26295144]
  22. ACS Appl Mater Interfaces. 2019 Aug 21;11(33):29630-29640 [PMID: 31337206]
  23. Lancet. 2017 Sep 16;390(10100):1151-1210 [PMID: 28919116]
  24. Biomed Pharmacother. 2019 Mar;111:1147-1155 [PMID: 30841428]
  25. Nano Lett. 2011 Apr 13;11(4):1792-9 [PMID: 21417253]
  26. Adv Mater. 2017 Sep;29(36): [PMID: 28745411]
  27. Theranostics. 2012;2(1):55-65 [PMID: 22272219]
  28. Biomaterials. 2018 Sep;177:149-160 [PMID: 29890364]
  29. Biomaterials. 2013 Apr;34(11):2796-806 [PMID: 23343632]
  30. Nanoscale. 2014 Oct 21;6(20):11553-73 [PMID: 25212238]
  31. Angew Chem Int Ed Engl. 2020 Jun 15;59(25):9914-9921 [PMID: 31418982]
  32. Angew Chem Int Ed Engl. 2014 Nov 10;53(46):12320-64 [PMID: 25294565]
  33. Chem Soc Rev. 2009 Jun;38(6):1759-82 [PMID: 19587967]
  34. Theranostics. 2018 Feb 12;8(7):1782-1797 [PMID: 29556356]
  35. Theranostics. 2020 Mar 15;10(10):4359-4373 [PMID: 32292500]
  36. Anal Chem. 2018 Oct 2;90(19):11696-11702 [PMID: 30175585]
  37. Adv Sci (Weinh). 2018 Nov 12;6(3):1801733 [PMID: 31168441]
  38. Nano Lett. 2013 Sep 11;13(9):4075-9 [PMID: 23899267]
  39. Sci Rep. 2019 Dec 27;9(1):20180 [PMID: 31882911]
  40. Chem Soc Rev. 2006 Nov;35(11):1084-94 [PMID: 17057837]
  41. Nat Nanotechnol. 2009 Nov;4(11):773-80 [PMID: 19893526]
  42. Curr Opin Biotechnol. 2010 Aug;21(4):489-97 [PMID: 20801636]
  43. ACS Nano. 2015 Sep 22;9(9):9199-209 [PMID: 26308265]
  44. J Am Chem Soc. 2009 Apr 1;131(12):4253-61 [PMID: 19267472]
  45. Acc Chem Res. 2008 Dec;41(12):1721-30 [PMID: 18712884]
  46. J Phys Chem C Nanomater Interfaces. 2010 Jan 1;114(45):19194-19201 [PMID: 21103390]
  47. ACS Nano. 2017 Sep 26;11(9):9239-9248 [PMID: 28850218]
  48. Nanoscale. 2014 Jan 7;6(1):199-202 [PMID: 24241910]
  49. Angew Chem Int Ed Engl. 2019 Jul 29;58(31):10542-10546 [PMID: 31112336]
  50. J Am Chem Soc. 2016 Nov 9;138(44):14509-14525 [PMID: 27723324]
  51. Adv Mater. 2020 Mar;32(10):e1905823 [PMID: 31990409]
  52. Nat Biomed Eng. 2018 Nov;2(11):797-809 [PMID: 30931172]
  53. Science. 2012 Mar 23;335(6075):1458-62 [PMID: 22442475]
  54. Nanoscale. 2017 Jul 27;9(29):10388-10396 [PMID: 28702636]
  55. Nano Today. 2017 Aug;15:91-106 [PMID: 29225665]
  56. ACS Appl Mater Interfaces. 2018 Sep 19;10(37):31106-31113 [PMID: 30178992]
  57. Nanoscale. 2013 Feb 21;5(4):1624-8 [PMID: 23334397]
  58. ACS Appl Mater Interfaces. 2017 Jan 11;9(1):279-285 [PMID: 27966883]
  59. J Am Chem Soc. 2014 Jan 15;136(2):750-7 [PMID: 24354568]
  60. Chem Rev. 2019 Jul 10;119(13):8087-8130 [PMID: 31125213]
  61. Chem Soc Rev. 2014 Jun 7;43(11):3957-75 [PMID: 24435209]
  62. Nano Lett. 2019 May 8;19(5):3011-3018 [PMID: 30971089]
  63. Small. 2009 Mar;5(6):646-64 [PMID: 19306458]
  64. Nanomedicine (Lond). 2015 Jan;10(2):299-320 [PMID: 25600972]
  65. Drug Discov Today. 2018 May;23(5):974-991 [PMID: 29406263]
  66. Adv Mater. 2012 Jun 5;24(21):2890-5 [PMID: 22539076]
  67. Theranostics. 2013;3(3):167-80 [PMID: 23471188]
  68. CA Cancer J Clin. 2018 Jul;68(4):284-296 [PMID: 29809280]
  69. Sci Adv. 2019 Oct 23;5(10):eaaw6870 [PMID: 31681841]
  70. Quant Imaging Med Surg. 2018 Oct;8(9):957-970 [PMID: 30505724]
  71. Theranostics. 2019 May 24;9(12):3443-3458 [PMID: 31281489]
  72. Adv Mater. 2015 Sep 9;27(34):5049-56 [PMID: 26198387]
  73. Angew Chem Int Ed Engl. 2012 Dec 14;51(51):12721-6 [PMID: 23136130]
  74. Theranostics. 2020 Mar 26;10(11):4809-4821 [PMID: 32308751]
  75. Bioconjug Chem. 2017 Jan 18;28(1):260-269 [PMID: 28095688]
  76. Mikrochim Acta. 2019 Jan 10;186(2):89 [PMID: 30631952]
  77. ACS Nano. 2019 May 28;13(5):5947-5958 [PMID: 30969747]
  78. Angew Chem Int Ed Engl. 2012 Sep 24;51(39):9818-21 [PMID: 22951900]
  79. J Control Release. 2018 Nov 28;290:138-140 [PMID: 30308257]
  80. Theranostics. 2020 Apr 6;10(12):5195-5208 [PMID: 32373207]
  81. Colloids Surf B Biointerfaces. 2016 Jun 1;142:408-416 [PMID: 26977977]
  82. Adv Mater. 2014 Dec 23;26(48):8210-6 [PMID: 25363309]
  83. ACS Nano. 2018 Jul 24;12(7):6523-6535 [PMID: 29906096]
  84. Angew Chem Int Ed Engl. 2013 Dec 9;52(50):13319-23 [PMID: 24166933]
  85. ACS Nano. 2016 Feb 23;10(2):2536-48 [PMID: 26815933]
  86. Adv Mater. 2016 Oct;28(39):8567-8585 [PMID: 27461909]
  87. Chem Soc Rev. 2015 Jul 21;44(14):4501-16 [PMID: 25652670]
  88. Nano Lett. 2019 Aug 14;19(8):5394-5402 [PMID: 31286778]
  89. ACS Nano. 2012 Apr 24;6(4):3461-7 [PMID: 22417124]
  90. Theranostics. 2019 Apr 13;9(10):2791-2799 [PMID: 31244923]
  91. ACS Appl Mater Interfaces. 2012 Jan;4(1):251-60 [PMID: 22103574]
  92. Molecules. 2017 May 22;22(5): [PMID: 28531163]
  93. Angew Chem Int Ed Engl. 2016 Dec 5;55(49):15297-15300 [PMID: 27862808]
  94. ACS Nano. 2014 Nov 25;8(11):11529-42 [PMID: 25375193]
  95. Mol Pharm. 2014 Mar 3;11(3):738-45 [PMID: 24472046]
  96. Adv Mater. 2019 Feb;31(6):e1805875 [PMID: 30556205]
  97. Nat Nanotechnol. 2019 Mar;14(3):279-286 [PMID: 30692675]
  98. ACS Nano. 2015 Mar 24;9(3):2711-9 [PMID: 25751167]
  99. Nanomedicine (Lond). 2007 Oct;2(5):657-68 [PMID: 17976028]
  100. Acta Pharm Sin B. 2018 Mar;8(2):137-146 [PMID: 29719775]
  101. Acc Chem Res. 2008 Dec;41(12):1578-86 [PMID: 18447366]
  102. Nano Lett. 2018 Feb 14;18(2):886-897 [PMID: 29323915]
  103. ACS Nano. 2017 Jun 27;11(6):5558-5566 [PMID: 28549217]
  104. Biomaterials. 2020 Jan;226:119545 [PMID: 31648136]
  105. Adv Healthc Mater. 2019 Jan;8(2):e1801257 [PMID: 30548216]
  106. J Control Release. 2018 Apr 10;275:254-268 [PMID: 29454063]
  107. J Phys Chem Lett. 2018 Jan 18;9(2):274-280 [PMID: 29293337]
  108. J Am Chem Soc. 2014 Nov 5;136(44):15684-93 [PMID: 25340966]
  109. Nano Lett. 2014;14(4):2181-8 [PMID: 24673373]
  110. Adv Mater. 2017 Jun;29(21): [PMID: 28328150]
  111. Biomaterials. 2019 Dec;223:119460 [PMID: 31513993]
  112. Nat Protoc. 2007;2(9):2182-90 [PMID: 17853874]
  113. Adv Healthc Mater. 2019 May;8(10):e1900047 [PMID: 30920772]
  114. Nat Commun. 2019 Jan 3;10(1):41 [PMID: 30604777]
  115. Small. 2019 Oct;15(44):e1903473 [PMID: 31513347]
  116. Int J Mol Sci. 2016 Sep 13;17(9): [PMID: 27649147]
  117. Bioconjug Chem. 2017 May 17;28(5):1382-1390 [PMID: 28453929]
  118. Theranostics. 2020 May 15;10(13):6072-6081 [PMID: 32483439]
  119. Cancer Res. 2018 Feb 1;78(3):798-808 [PMID: 29217761]
  120. Chem Commun (Camb). 2018 Nov 27;54(95):13399-13402 [PMID: 30426112]
  121. Nano Lett. 2016 Oct 12;16(10):6257-6264 [PMID: 27643533]
  122. Angew Chem Int Ed Engl. 2019 Dec 2;58(49):17671-17674 [PMID: 31545542]
  123. Nat Nanotechnol. 2009 Nov;4(11):710-1 [PMID: 19898521]
  124. Angew Chem Int Ed Engl. 2010 May 25;49(23):3976-80 [PMID: 20408148]
  125. Curr Opin Biotechnol. 2019 Aug;58:1-8 [PMID: 30390535]
  126. ACS Nano. 2017 Aug 22;11(8):8273-8281 [PMID: 28742316]
  127. Chem Rev. 2017 Sep 13;117(17):11476-11521 [PMID: 28862437]
  128. Nat Mater. 2020 May;19(5):566-575 [PMID: 31932672]
  129. Theranostics. 2020 Mar 4;10(9):4042-4055 [PMID: 32226538]
  130. Nano Lett. 2020 Jan 8;20(1):272-277 [PMID: 31821008]
  131. Angew Chem Int Ed Engl. 2018 Apr 23;57(18):4902-4906 [PMID: 29488312]
  132. ACS Nano. 2016 Jan 26;10(1):633-647 [PMID: 26650065]
  133. CA Cancer J Clin. 2018 Nov;68(6):394-424 [PMID: 30207593]
  134. Adv Mater. 2020 Apr;32(13):e1901255 [PMID: 31206841]
  135. Theranostics. 2020 Jan 1;10(2):841-855 [PMID: 31903154]
  136. ACS Nano. 2016 Nov 22;10(11):10245-10257 [PMID: 27791364]
  137. Chem Rev. 2011 Jun 8;111(6):3888-912 [PMID: 21434605]
  138. ACS Appl Mater Interfaces. 2013 Oct 23;5(20):10357-66 [PMID: 24063810]
  139. ACS Nano. 2018 Jun 26;12(6):5312-5322 [PMID: 29697962]
  140. Adv Mater. 2016 Apr;28(16):3094-101 [PMID: 26913692]
  141. Theranostics. 2016 Apr 27;6(7):948-68 [PMID: 27217830]
  142. Bioconjug Chem. 2004 Jul-Aug;15(4):897-900 [PMID: 15264879]
  143. Mater Sci Eng C Mater Biol Appl. 2016 Jul 1;64:199-207 [PMID: 27127045]
  144. Acc Chem Res. 2011 Oct 18;44(10):914-24 [PMID: 21528889]
  145. Theranostics. 2013;3(3):223-38 [PMID: 23471510]
  146. Nat Mater. 2011 May;10(5):361-6 [PMID: 21478881]
  147. Small. 2015 Sep 16;11(35):4584-93 [PMID: 26061810]
  148. Nano Lett. 2007 Dec;7(12):3798-802 [PMID: 18020475]
  149. Adv Healthc Mater. 2017 Jan;6(1): [PMID: 27976529]
  150. Proc Natl Acad Sci U S A. 2003 Nov 11;100(23):13549-54 [PMID: 14597719]
  151. Chem Rev. 2012 Oct 10;112(10):5520-51 [PMID: 22783915]
  152. Angew Chem Int Ed Engl. 2019 Oct 14;58(42):15120-15127 [PMID: 31452298]
  153. Chem Rev. 2018 Mar 28;118(6):3121-3207 [PMID: 29400955]
  154. Nano Lett. 2013 Sep 11;13(9):4333-9 [PMID: 23984758]
  155. Nanotechnology. 2020 May 15;31(20):202001 [PMID: 31978932]

MeSH Term

Animals
Biosensing Techniques
Chalcogens
Drug Delivery Systems
Ferric Compounds
Gold
Humans
Hyperthermia, Induced
Metal Nanoparticles
Models, Animal
Multimodal Imaging
Theranostic Nanomedicine

Chemicals

Chalcogens
Ferric Compounds
ferric oxide
Gold

Word Cloud

Created with Highcharts 10.0.0hybridnanostructuresmetalAunanoparticlespropertiesduelocalizedsurfaceplasmonresonancesopticalapplicationsenhancingmagneticnanomedicineNobleattractedextensiveinterestspastdecadessizemorphologydependentuniquepropertyhighchemicalstabilitygoodbiocompatibilityeasyfunctionalizationmakepromisingcandidatesvarietybiomedicalincludingbioimagingbiosensingcancertherapyintentionresponsenearinfraredwindowendowingadditionalintegratedfunctionalnanomaterialspossesscomplementaryattributescopperchalcogenidesoxidesconstructedexpectedexhibitunconventionalcomparedseparatebuildingunitsnanoscaleinteractionsmaterialsdifferentphysicochemicalthusbroadeningapplicationscopeoverallperformancereviewsummarizerecentprogressesdesignsynthesisnobleAu-basedinorganicpotentialchallengesclinicaltranslationsGold-basedInorganicNanohybridsNanomedicineApplicationstheranostics

Similar Articles

Cited By