Effects of cTBS on the Frequency-Following Response and Other Auditory Evoked Potentials.

Fran López-Caballero, Pablo Martin-Trias, Teresa Ribas-Prats, Natàlia Gorina-Careta, David Bartrés-Faz, Carles Escera
Author Information
  1. Fran López-Caballero: Institute of Neurosciences, University of Barcelona, Barcelona, Spain.
  2. Pablo Martin-Trias: Medical Psychology Unit, Department of Medicine, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.
  3. Teresa Ribas-Prats: Institute of Neurosciences, University of Barcelona, Barcelona, Spain.
  4. Natàlia Gorina-Careta: Institute of Neurosciences, University of Barcelona, Barcelona, Spain.
  5. David Bartrés-Faz: Institute of Neurosciences, University of Barcelona, Barcelona, Spain.
  6. Carles Escera: Institute of Neurosciences, University of Barcelona, Barcelona, Spain.

Abstract

The frequency-following response (FFR) is an auditory evoked potential (AEP) that follows the periodic characteristics of a sound. Despite being a widely studied biosignal in auditory neuroscience, the neural underpinnings of the FFR are still unclear. Traditionally, FFR was associated with subcortical activity, but recent evidence suggested cortical contributions which may be dependent on the stimulus frequency. We combined electroencephalography (EEG) with an inhibitory transcranial magnetic stimulation protocol, the continuous theta burst stimulation (cTBS), to disentangle the cortical contribution to the FFR elicited to stimuli of high and low frequency. We recorded FFR to the syllable /ba/ at two fundamental frequencies (Low: 113 Hz; High: 317 Hz) in healthy participants. FFR, cortical potentials, and auditory brainstem response (ABR) were recorded before and after real and sham cTBS in the right primary auditory cortex. Results showed that cTBS did not produce a significant change in the FFR recorded, in any of the frequencies. No effect was observed in the ABR and cortical potentials, despite the latter known contributions from the auditory cortex. Possible reasons behind the negative results include compensatory mechanisms from the non-targeted areas, intraindividual variability of the cTBS effectiveness, and the particular location of our target area, the primary auditory cortex.

Keywords

References

  1. J Neurosci. 2012 Aug 22;32(34):11507-10 [PMID: 22915097]
  2. J Physiol. 2008 Dec 1;586(23):5717-25 [PMID: 18845611]
  3. J Speech Lang Hear Res. 2011 Feb;54(1):228-42 [PMID: 20689038]
  4. Cereb Cortex. 2013 Jul;23(7):1593-605 [PMID: 22661405]
  5. Neuroimage. 2020 Jan 1;204:116253 [PMID: 31600592]
  6. Neurosci Biobehav Rev. 2016 Apr;63:43-64 [PMID: 26850210]
  7. Clin Neurophysiol. 2010 Mar;121(3):441-7 [PMID: 20071228]
  8. PLoS One. 2013;8(2):e55215 [PMID: 23441150]
  9. Brain. 2000 Mar;123 Pt 3:572-84 [PMID: 10686179]
  10. Neuroimage. 2006 Nov 1;33(2):759-73 [PMID: 16934494]
  11. PLoS One. 2011 May 11;6(5):e18082 [PMID: 21589653]
  12. Percept Mot Skills. 2013 Apr;116(2):456-65 [PMID: 24032322]
  13. Exp Brain Res. 2008 Mar;185(4):611-21 [PMID: 18043910]
  14. Brain Topogr. 2014 Jul;27(4):539-52 [PMID: 24150692]
  15. Biol Psychiatry. 2014 Jul 15;76(2):101-10 [PMID: 24315551]
  16. Electroencephalogr Clin Neurophysiol. 1994 May;92(3):238-52 [PMID: 7514993]
  17. Eur J Neurosci. 2012 Aug;36(3):2317-23 [PMID: 22626449]
  18. Audiology. 1979;18(5):358-81 [PMID: 496719]
  19. Hum Brain Mapp. 2013 Jan;34(1):150-7 [PMID: 21997735]
  20. J Neurophysiol. 2009 Oct;102(4):2358-74 [PMID: 19675285]
  21. Front Hum Neurosci. 2015 Jan 06;8:1029 [PMID: 25646077]
  22. Clin Neurophysiol. 2017 Nov;128(11):2268-2278 [PMID: 29028501]
  23. Neural Plast. 2014;2014:894203 [PMID: 25478237]
  24. J Neurosci. 2016 Feb 17;36(7):2302-15 [PMID: 26888939]
  25. Sci Rep. 2018 Jun 19;8(1):9371 [PMID: 29921865]
  26. Neuroimage. 2018 Jul 15;175:56-69 [PMID: 29604459]
  27. Cereb Cortex. 2014 Jan;24(1):143-53 [PMID: 23042732]
  28. Front Psychiatry. 2017 Nov 08;8:227 [PMID: 29167648]
  29. Psychol Methods. 2011 Dec;16(4):406-19 [PMID: 21787084]
  30. Brain Stimul. 2012 Oct;5(4):577-85 [PMID: 22410480]
  31. Acta Psychiatr Scand. 2017 Mar;135(3):228-238 [PMID: 27987221]
  32. Front Psychol. 2011 Jul 15;2:161 [PMID: 21811478]
  33. Restor Neurol Neurosci. 2016;34(2):165-75 [PMID: 26890094]
  34. Neuroimage. 2017 May 15;152:590-601 [PMID: 28300640]
  35. Neurosci Lett. 2017 Jul 13;653:84-91 [PMID: 28529174]
  36. Front Psychol. 2013 May 13;4:264 [PMID: 23717294]
  37. Clin Neurophysiol. 2012 Jun;123(6):1226-33 [PMID: 22100859]
  38. Clin Neurophysiol. 2015 Jun;126(6):1071-1107 [PMID: 25797650]
  39. Brain Stimul. 2014 May-Jun;7(3):372-80 [PMID: 24630849]
  40. Psychophysiology. 1987 Jul;24(4):375-425 [PMID: 3615753]
  41. Int J Audiol. 2017 Sep;56(9):692-700 [PMID: 28415897]
  42. J Neurosci. 2012 May 16;32(20):6785-94 [PMID: 22593048]
  43. Electroencephalogr Clin Neurophysiol. 1977 May;42(5):656-64 [PMID: 67025]
  44. Neuron. 2009 Nov 12;64(3):311-9 [PMID: 19914180]
  45. Neurobiol Aging. 2014 Nov;35(11):2526-2540 [PMID: 24908166]
  46. Schizophr Res. 2009 Mar;108(1-3):11-24 [PMID: 19138833]
  47. Curr Opin Neurobiol. 2004 Aug;14(4):474-80 [PMID: 15321068]
  48. Clin Neurophysiol. 2009 Dec;120(12):2008-2039 [PMID: 19833552]
  49. Electroencephalogr Clin Neurophysiol. 1974 Apr;36(4):415-24 [PMID: 4140069]
  50. Brain Stimul. 2016 Nov - Dec;9(6):876-881 [PMID: 27342938]
  51. J Neurosci. 2016 Oct 19;36(42):10782-10790 [PMID: 27798133]
  52. Hear Res. 2008 Nov;245(1-2):35-47 [PMID: 18765275]
  53. Neuron. 2005 Jan 20;45(2):201-6 [PMID: 15664172]
  54. Hear Res. 1992 Jul;60(2):115-42 [PMID: 1639723]
  55. Cereb Cortex. 2008 Mar;18(3):610-25 [PMID: 17586604]
  56. Hear Res. 2004 Mar;189(1-2):1-12 [PMID: 14987747]
  57. Trends Cogn Sci. 2008 Dec;12(12):447-54 [PMID: 18951833]
  58. Front Syst Neurosci. 2018 May 28;12:20 [PMID: 29892214]
  59. Ear Hear. 2010 Jun;31(3):302-24 [PMID: 20084007]
  60. Psychophysiology. 1994 Nov;31(6):611-5 [PMID: 7846222]
  61. Brain Res Cogn Brain Res. 2005 Sep;25(1):161-8 [PMID: 15935624]
  62. Proc Natl Acad Sci U S A. 2012 May 15;109(20):7877-81 [PMID: 22547804]
  63. Neuroscience. 2013 Jul 23;243:104-14 [PMID: 23518221]
  64. Nat Hum Behav. 2019 Mar;3(3):197 [PMID: 30953022]
  65. J Acoust Soc Am. 2007 Nov;122(5):2772-85 [PMID: 18189568]
  66. Neurosci Biobehav Rev. 2011 Nov;35(10):2046-57 [PMID: 21645541]
  67. Brain Topogr. 2019 May;32(3):343-353 [PMID: 30584648]
  68. Vis Neurosci. 2008 Jan-Feb;25(1):77-81 [PMID: 18282312]
  69. Hear Res. 2012 Dec;294(1-2):143-52 [PMID: 22974503]
  70. Hear Res. 2019 Jan;371:28-39 [PMID: 30448690]
  71. Neuroimage. 2013 Oct 1;79:162-71 [PMID: 23631993]
  72. J Neurosci. 2015 Oct 28;35(43):14602-11 [PMID: 26511249]
  73. Hear Res. 2015 Jul;325:49-54 [PMID: 25828076]
  74. PLoS One. 2011;6(11):e27088 [PMID: 22073259]
  75. Arch Gen Psychiatry. 2003 Jan;60(1):49-56 [PMID: 12511172]
  76. Physiol Rev. 2004 Apr;84(2):541-77 [PMID: 15044682]
  77. J Neurophysiol. 1988 Dec;60(6):1823-40 [PMID: 3236053]
  78. Clin Neurophysiol. 2007 Aug;118(8):1815-23 [PMID: 17587641]
  79. Psychophysiology. 2010 Mar 1;47(2):236-46 [PMID: 19824950]
  80. J Neurosci. 2015 Jan 21;35(3):1240-9 [PMID: 25609638]
  81. Nat Rev Neurosci. 2010 Aug;11(8):599-605 [PMID: 20648064]
  82. Electroencephalogr Clin Neurophysiol. 1975 Nov;39(5):465-72 [PMID: 52439]
  83. Front Psychol. 2013 Nov 26;4:863 [PMID: 24324449]
  84. Biol Psychol. 2020 Jan;149:107807 [PMID: 31693923]
  85. J Neurophysiol. 2013 Mar;109(5):1283-95 [PMID: 23236002]
  86. Neuroimage. 2018 Aug 15;177:45-58 [PMID: 29742385]
  87. J Neurosci. 2017 Mar 29;37(13):3610-3620 [PMID: 28270574]
  88. J Acoust Soc Am. 2000 Mar;107(3):1530-40 [PMID: 10738807]
  89. Sci Rep. 2016 Nov 17;6:37405 [PMID: 27853313]
  90. Brain Stimul. 2015 Jul-Aug;8(4):685-92 [PMID: 26014214]
  91. Hear Res. 2015 May;323:68-80 [PMID: 25660195]
  92. Spat Vis. 1997;10(4):433-6 [PMID: 9176952]
  93. J Neurosci. 2012 Jan 25;32(4):1447-52 [PMID: 22279229]
  94. Neurobiol Learn Mem. 2014 Mar;109:82-93 [PMID: 24291573]
  95. J Magn Reson Imaging. 2008 Aug;28(2):287-99 [PMID: 18666141]
  96. Exp Brain Res. 2018 Mar;236(3):733-743 [PMID: 29306985]
  97. Clin Neurophysiol. 2004 Sep;115(9):2021-30 [PMID: 15294204]
  98. Proc Natl Acad Sci U S A. 2013 Mar 12;110(11):4357-62 [PMID: 23401541]
  99. J Clin Neurophysiol. 2016 Aug;33(4):301-2 [PMID: 27482792]
  100. Brain Stimul. 2017 May - Jun;10(3):588-595 [PMID: 28024963]
  101. Neuroscience. 2015 Sep 24;304:266-78 [PMID: 26208843]
  102. Neuropsychologia. 2010 Jan;48(1):270-7 [PMID: 19769994]
  103. Nat Commun. 2016 Mar 24;7:11070 [PMID: 27009409]
  104. Psychon Bull Rev. 2009 Apr;16(2):225-37 [PMID: 19293088]
  105. J Assoc Res Otolaryngol. 2011 Feb;12(1):89-100 [PMID: 20878201]
  106. Brain Res. 1980 Sep 29;198(1):75-84 [PMID: 7407595]
  107. Brain Stimul. 2015 Jan-Feb;8(1):114-23 [PMID: 25444593]
  108. Psychiatry Res. 2004 Jun 30;127(1-2):9-17 [PMID: 15261700]
  109. Brain Stimul. 2013 Sep;6(5):752-9 [PMID: 23453932]
  110. Brain. 2000 Dec;123 Pt 12:2512-8 [PMID: 11099452]
  111. J Clin Psychiatry. 2007 Mar;68(3):416-21 [PMID: 17388712]
  112. Neuroimage. 2019 Dec;203:116185 [PMID: 31520743]

Word Cloud

Created with Highcharts 10.0.0FFRauditorycTBScorticalstimulationcortexresponserecordedfrequency-followingneuralcontributionsfrequencytranscranialmagneticcontinuousthetaburstfrequenciesHzpotentialsABRprimaryevokedpotentialAEPfollowsperiodiccharacteristicssoundDespitewidelystudiedbiosignalneuroscienceunderpinningsstillunclearTraditionallyassociatedsubcorticalactivityrecentevidencesuggestedmaydependentstimuluscombinedelectroencephalographyEEGinhibitoryprotocoldisentanglecontributionelicitedstimulihighlowsyllable/ba/twofundamentalLow:113High:317healthyparticipantsbrainstemrealshamrightResultsshowedproducesignificantchangeeffectobserveddespitelatterknownPossiblereasonsbehindnegativeresultsincludecompensatorymechanismsnon-targetedareasintraindividualvariabilityeffectivenessparticularlocationtargetareaEffectsFrequency-FollowingResponseAuditoryEvokedPotentialsgenerators

Similar Articles

Cited By