Behavioral Differences Between Subject Groups Identified Using Smart Homes and Change Point Detection.

Gina Sprint, Diane J Cook, Roschelle Fritz
Author Information

Abstract

With the arrival of the internet of things, smart environments are becoming increasingly ubiquitous in our everyday lives. Sensor data collected from smart home environments can provide unobtrusive, longitudinal time series data that are representative of the smart home resident's routine behavior and how this behavior changes over time. When longitudinal behavioral data are available from multiple smart home residents, differences between groups of subjects can be investigated. Group-level discrepancies may help isolate behaviors that manifest in daily routines due to a health concern or major lifestyle change. To acquire such insights, we propose an algorithmic framework based on change point detection called Behavior Change Detection for Groups (BCD-G). We hypothesize that, using BCD-G, we can quantify and characterize differences in behavior between groups of individual smart home residents. We evaluate our BCD-G framework using one month of continuous sensor data for each of fourteen smart home residents, divided into two groups. All subjects in the first group are diagnosed with cognitive impairment. The second group consists of cognitively healthy, age-matched controls. Using BCD-G, we identify differences between these two groups, such as how impairment affects patterns of performing activities of daily living and how clinically-relevant behavioral features, such as in-home walking speed, differ for cognitively-impaired individuals. With the unobtrusive monitoring of smart home environments, clinicians can use BCD-G for remote identification of behavior changes that are early indicators of health concerns.

References

  1. Nat Commun. 2020 Apr 14;11(1):1778 [PMID: 32286325]
  2. IEEE Trans Syst Man Cybern Syst. 2013 Nov;43(6):1302-1313 [PMID: 25530925]
  3. Gerontologist. 2002 Jun;42(3):334-41 [PMID: 12040135]
  4. BMC Cancer. 2020 Apr 15;20(1):309 [PMID: 32293345]
  5. IEEE J Biomed Health Inform. 2016 May;20(3):856-864 [PMID: 25861091]
  6. Pervasive Mob Comput. 2014 Feb 1;10(Pt B):138-154 [PMID: 24729780]
  7. Gerontechnology. 2013 Jan 1;11(3):457-468 [PMID: 24049513]
  8. IEEE J Biomed Health Inform. 2015 Nov;19(6):1882-92 [PMID: 26259225]
  9. JAMA. 2011 Jan 5;305(1):50-8 [PMID: 21205966]
  10. J Women Aging. 2017 Mar-Apr;29(2):126-136 [PMID: 27455030]
  11. NPJ Digit Med. 2020 Feb 26;3:23 [PMID: 32140566]
  12. IEEE J Biomed Health Inform. 2017 Mar;21(2):339-348 [PMID: 26841424]
  13. IEEE Trans Med Imaging. 2017 Jul;36(7):1550-1560 [PMID: 28287963]
  14. J Biomed Inform. 2016 Oct;63:54-65 [PMID: 27471222]
  15. J Gerontol A Biol Sci Med Sci. 2016 Aug;71(8):1102-8 [PMID: 26916339]
  16. Aging Ment Health. 2016 Oct;20(10):1084-91 [PMID: 26133745]
  17. IEEE Trans Knowl Data Eng. 2019 May;31(5):1010-1023 [PMID: 35903759]
  18. Breast Cancer Res Treat. 2018 Sep;171(2):399-411 [PMID: 29876695]
  19. Pervasive Mob Comput. 2016 Jun;28:51-68 [PMID: 27346990]
  20. Neural Netw. 2013 Jul;43:72-83 [PMID: 23500502]
  21. IEEE J Biomed Health Inform. 2018 Nov;22(6):1720-1731 [PMID: 29994359]
  22. Annu Rev Clin Psychol. 2017 May 8;13:23-47 [PMID: 28375728]
  23. Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:6495-8 [PMID: 22255826]
  24. J Sleep Res. 2005 Mar;14(1):61-8 [PMID: 15743335]
  25. Computer (Long Beach Calif). 2013 Jul;46(7): [PMID: 24415794]
  26. IEEE J Biomed Health Inform. 2017 Jul;21(4):986-993 [PMID: 27455530]
  27. Knowl Inf Syst. 2017 May;51(2):339-367 [PMID: 28603327]
  28. IEEE Trans Inf Technol Biomed. 2012 Jul;16(4):607-14 [PMID: 22547460]

Grants

  1. R01 EB009675/NIBIB NIH HHS
  2. R25 EB024327/NIBIB NIH HHS
  3. R01 NR016732/NINR NIH HHS
  4. R41 EB029774/NIBIB NIH HHS
  5. R25 AG046114/NIA NIH HHS
  6. R01 AG065218/NIA NIH HHS

MeSH Term

Activities of Daily Living
Cognitive Dysfunction
Humans

Word Cloud

Created with Highcharts 10.0.0smarthomeBCD-GdatacanbehaviorgroupsenvironmentsresidentsdifferencesunobtrusivelongitudinaltimechangesbehavioralsubjectsdailyhealthchangeframeworkChangeDetectionGroupsusingtwogroupimpairmentUsingarrivalinternetthingsbecomingincreasinglyubiquitouseverydaylivesSensorcollectedprovideseriesrepresentativeresident'sroutineavailablemultipleinvestigatedGroup-leveldiscrepanciesmayhelpisolatebehaviorsmanifestroutinesdueconcernmajorlifestyleacquireinsightsproposealgorithmicbasedpointdetectioncalledBehaviorhypothesizequantifycharacterizeindividualevaluateonemonthcontinuoussensorfourteendividedfirstdiagnosedcognitivesecondconsistscognitivelyhealthyage-matchedcontrolsidentifyaffectspatternsperformingactivitieslivingclinically-relevantfeaturesin-homewalkingspeeddiffercognitively-impairedindividualsmonitoringcliniciansuseremoteidentificationearlyindicatorsconcernsBehavioralDifferencesSubjectIdentifiedSmartHomesPoint

Similar Articles

Cited By