Tailoring Nanoparticle-Biofilm Interactions to Increase the Efficacy of Antimicrobial Agents Against .

Stephanie Fulaz, Henry Devlin, Stefania Vitale, Laura Quinn, James P O'Gara, Eoin Casey
Author Information
  1. Stephanie Fulaz: UCD School of Chemical and Bioprocess Engineering, University College Dublin, Dublin, Ireland. ORCID
  2. Henry Devlin: UCD School of Chemical and Bioprocess Engineering, University College Dublin, Dublin, Ireland. ORCID
  3. Stefania Vitale: UCD School of Chemical and Bioprocess Engineering, University College Dublin, Dublin, Ireland. ORCID
  4. Laura Quinn: UCD School of Chemical and Bioprocess Engineering, University College Dublin, Dublin, Ireland. ORCID
  5. James P O'Gara: Department of Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland.
  6. Eoin Casey: UCD School of Chemical and Bioprocess Engineering, University College Dublin, Dublin, Ireland. ORCID

Abstract

BACKGROUND: Considering the timeline required for the development of novel antimicrobial drugs, increased attention should be given to repurposing old drugs and improving antimicrobial efficacy, particularly for chronic infections associated with biofilms. Methicillin-susceptible (MSSA) and methicillin-resistant (MRSA) are common causes of biofilm-associated infections but produce different biofilm matrices. MSSA biofilm cells are typically embedded in an extracellular polysaccharide matrix, whereas MRSA biofilms comprise predominantly of surface proteins and extracellular DNA (eDNA). Nanoparticles (NPs) have the potential to enhance the delivery of antimicrobial agents into biofilms. However, the mechanisms which influence the interactions between NPs and the biofilm matrix are not yet fully understood.
METHODS: To investigate the influence of NPs surface chemistry on vancomycin (VAN) encapsulation and NP entrapment in MRSA and MSSA biofilms, mesoporous silica nanoparticles (MSNs) with different surface functionalization (bare-B, amine-D, carboxyl-C, aromatic-A) were synthesised using an adapted Stöber method. The antibacterial efficacy of VAN-loaded MSNs was assessed against MRSA and MSSA biofilms.
RESULTS: The two negatively charged MSNs (MSN-B and MSN-C) showed a higher VAN loading in comparison to the positively charged MSNs (MSN-D and MSN-A). Cellular binding with MSN suspensions (0.25 mg mL) correlated with the reduced viability of both MSSA and MRSA biofilm cells. This allowed the administration of low MSNs concentrations while maintaining a high local concentration of the antibiotic surrounding the bacterial cells.
CONCLUSION: Our data suggest that by tailoring the surface functionalization of MSNs, enhanced bacterial cell targeting can be achieved, leading to a novel treatment strategy for biofilm infections.

Keywords

References

  1. Int J Nanomedicine. 2018 Feb 27;13:1179-1213 [PMID: 29520143]
  2. Nephron Clin Pract. 2009;113(3):c125-31 [PMID: 19729922]
  3. Invest Ophthalmol Vis Sci. 2010 Dec;51(12):6329-33 [PMID: 20720230]
  4. J Infect Dev Ctries. 2014 Feb 13;8(2):129-36 [PMID: 24518621]
  5. FEMS Microbiol Lett. 2007 May;270(2):179-88 [PMID: 17419768]
  6. Colloids Surf B Biointerfaces. 2020 Sep;193:111123 [PMID: 32450504]
  7. BMC Bioinformatics. 2010 May 21;11:274 [PMID: 20492697]
  8. ACS Nano. 2015 Mar 24;9(3):2255-89 [PMID: 25625290]
  9. Sci Rep. 2018 Jul 16;8(1):10738 [PMID: 30013112]
  10. Sci Rep. 2019 Mar 21;9(1):5010 [PMID: 30899062]
  11. Colloids Surf B Biointerfaces. 2017 Dec 1;160:639-648 [PMID: 29031224]
  12. Int J Med Microbiol. 2002 Jul;292(2):107-13 [PMID: 12195733]
  13. Materials (Basel). 2018 Feb 23;11(2): [PMID: 29473883]
  14. J Mater Chem B. 2014 Jan 21;2(3):253-256 [PMID: 32261504]
  15. Nature. 2007 Aug 9;448(7154):645-6 [PMID: 17687303]
  16. Curr Opin Microbiol. 2013 Oct;16(5):580-9 [PMID: 23880136]
  17. Chem Biol. 2012 Dec 21;19(12):1503-13 [PMID: 23261595]
  18. F1000Res. 2016 Mar 16;5: [PMID: 27006760]
  19. Front Cell Infect Microbiol. 2015 Feb 10;5:7 [PMID: 25713785]
  20. Antimicrob Agents Chemother. 2011 Mar;55(3):1075-81 [PMID: 21189346]
  21. Nanoscale Res Lett. 2017 Dec;12(1):74 [PMID: 28124301]
  22. Curr Microbiol. 2016 Nov;73(5):747-753 [PMID: 27449213]
  23. J Mater Chem B. 2018 Feb 7;6(5):740-752 [PMID: 32254261]
  24. ACS Appl Mater Interfaces. 2016 Feb;8(7):4838-50 [PMID: 26779668]
  25. ACS Appl Mater Interfaces. 2019 Sep 11;11(36):32679-32688 [PMID: 31418546]
  26. J Bacteriol. 2008 Jun;190(11):3835-50 [PMID: 18375547]
  27. Folia Microbiol (Praha). 2008;53(1):61-6 [PMID: 18481220]
  28. Curr Opin Pharmacol. 2014 Oct;18:56-60 [PMID: 25254623]
  29. Microbiol Res. 2015 Sep;178:35-41 [PMID: 26302845]
  30. J Clin Microbiol. 2007 May;45(5):1379-88 [PMID: 17329452]
  31. FEMS Immunol Med Microbiol. 2012 Jul;65(2):127-45 [PMID: 22469292]
  32. Nanomedicine. 2018 Oct;14(7):2307-2316 [PMID: 29410321]
  33. Curr Biol. 2013 Dec 16;23(24):R1063-5 [PMID: 24501765]
  34. Future Microbiol. 2012 Sep;7(9):1061-72 [PMID: 22953707]
  35. Trends Microbiol. 2019 Nov;27(11):915-926 [PMID: 31420126]
  36. Sci Rep. 2016 Jan 05;6:18877 [PMID: 26728712]
  37. J Mater Chem B. 2018 Apr 7;6(13):1899-1902 [PMID: 32254355]
  38. J Control Release. 2015 Jul 10;209:150-8 [PMID: 25913364]
  39. Front Cell Infect Microbiol. 2015 Jan 28;5:1 [PMID: 25674541]
  40. Nat Rev Microbiol. 2010 Sep;8(9):623-33 [PMID: 20676145]
  41. Nat Rev Microbiol. 2016 Aug 11;14(9):563-75 [PMID: 27510863]
  42. Trends Microbiol. 2005 Jan;13(1):34-40 [PMID: 15639630]
  43. Small. 2015 Nov 25;11(44):5949-55 [PMID: 26426420]
  44. Int J Pharm. 2018 Feb 15;537(1-2):148-161 [PMID: 29278732]
  45. P T. 2015 Apr;40(4):277-83 [PMID: 25859123]
  46. Chem Commun (Camb). 2015;51(2):282-5 [PMID: 25407407]
  47. Open Microbiol J. 2017 Apr 28;11:53-62 [PMID: 28553416]
  48. Nat Rev Drug Discov. 2003 Feb;2(2):114-22 [PMID: 12563302]
  49. Colloids Surf B Biointerfaces. 2019 Jan 1;173:392-399 [PMID: 30317126]
  50. Sci Rep. 2015 Dec 01;5:17040 [PMID: 26621190]
  51. PLoS Pathog. 2016 Jul 21;12(7):e1005671 [PMID: 27442433]
  52. Science. 1999 May 21;284(5418):1318-22 [PMID: 10334980]
  53. Adv Mater. 2013 Jun 18;25(23):3144-76 [PMID: 23681931]

MeSH Term

Anti-Infective Agents
Biofilms
Methicillin-Resistant Staphylococcus aureus
Microbial Sensitivity Tests
Nanoparticles
Proton Magnetic Resonance Spectroscopy
Silicon Dioxide
Vancomycin

Chemicals

Anti-Infective Agents
Vancomycin
Silicon Dioxide

Word Cloud

Created with Highcharts 10.0.0MSNsbiofilmsMSSAMRSAbiofilmantimicrobialsurfaceinfectionscellsmatrixNPsnoveldrugsefficacydifferentextracellularinfluenceinteractionsvancomycinVANmesoporoussilicananoparticlesfunctionalizationchargedbacterialBACKGROUND:ConsideringtimelinerequireddevelopmentincreasedattentiongivenrepurposingoldimprovingparticularlychronicassociatedMethicillin-susceptiblemethicillin-resistantcommoncausesbiofilm-associatedproducematricestypicallyembeddedpolysaccharidewhereascomprisepredominantlyproteinsDNAeDNANanoparticlespotentialenhancedeliveryagentsHowevermechanismsyetfullyunderstoodMETHODS:investigatechemistryencapsulationNPentrapmentbare-Bamine-Dcarboxyl-Caromatic-AsynthesisedusingadaptedStöbermethodantibacterialVAN-loadedassessedRESULTS:twonegativelyMSN-BMSN-CshowedhigherloadingcomparisonpositivelyMSN-DMSN-ACellularbindingMSNsuspensions025mgmLcorrelatedreducedviabilityallowedadministrationlowconcentrationsmaintaininghighlocalconcentrationantibioticsurroundingCONCLUSION:datasuggesttailoringenhancedcelltargetingcanachievedleadingtreatmentstrategyTailoringNanoparticle-BiofilmInteractionsIncreaseEfficacyAntimicrobialAgentsEPSStaphylococcusaureusnanoparticle-biofilm

Similar Articles

Cited By