Uncovering the Complexity Mechanism of Different Formulas Treatment for Rheumatoid Arthritis Based on a Novel Network Pharmacology Model.

Ke-Xin Wang, Yao Gao, Cheng Lu, Yao Li, Bo-Ya Zhou, Xue-Mei Qin, Guan-Hua Du, Li Gao, Dao-Gang Guan, Ai-Ping Lu
Author Information
  1. Ke-Xin Wang: Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China.
  2. Yao Gao: Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China.
  3. Cheng Lu: Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China.
  4. Yao Li: Institute of Integrated Bioinformedicine and Translational Science, Hong Kong Baptist University, Hong Kong, Hong Kong.
  5. Bo-Ya Zhou: Department of Ultrasound, Eighth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
  6. Xue-Mei Qin: Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China.
  7. Guan-Hua Du: Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China.
  8. Li Gao: Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China.
  9. Dao-Gang Guan: Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
  10. Ai-Ping Lu: Institute of Integrated Bioinformedicine and Translational Science, Hong Kong Baptist University, Hong Kong, Hong Kong.

Abstract

Traditional Chinese medicine (TCM) with the characteristics of "multi-component-multi-target-multi-pathway" has obvious advantages in the prevention and treatment of complex diseases, especially in the aspects of "treating the same disease with different treatments". However, there are still some problems such as unclear substance basis and molecular mechanism of the effectiveness of formula. Network pharmacology is a new strategy based on system biology and poly-pharmacology, which could observe the intervention of drugs on disease networks at systematical and comprehensive level, and especially suitable for study of complex TCM systems. Rheumatoid Arthritis (RA) is a chronic inflammatory autoimmune disease, causing articular and extra articular dysfunctions among patients, it could lead to irreversible joint damage or disability if left untreated. TCM formulas, Danggui-Sini-decoction (DSD), Guizhi-Fuzi-decoction (GFD), and Huangqi-Guizhi-Wuwu-Decoction (HGWD), et al., have been found successful in controlling RA in clinical applications. Here, a network pharmacology-based approach was established. With this model, key gene network motif with significant (KNMS) of three formulas were predicted, and the molecular mechanism of different formula in the treatment of Rheumatoid Arthritis (RA) was inferred based on these KNMSs. The results show that the KNMSs predicted by the model kept a high consistency with the corresponding C-T network in coverage of RA pathogenic genes, coverage of functional pathways and cumulative contribution of key nodes, which confirmed the reliability and accuracy of our proposed KNMS prediction strategy. All validated KNMSs of each RA therapy-related formula were employed to decode the mechanisms of different formulas treat the same disease. Finally, the key components in KNMSs of each formula were evaluated by experiments. Our proposed KNMS prediction and validation strategy provides methodological reference for interpreting the optimization of core components group and inference of molecular mechanism of formula in the treatment of complex diseases in TCM.

Keywords

References

  1. Genome Res. 2007 Oct;17(10):1537-45 [PMID: 17785539]
  2. Ann Rheum Dis. 2008 Jul;67(7):909-16 [PMID: 17827184]
  3. Proc Natl Acad Sci U S A. 2004 Mar 2;101(9):2658-63 [PMID: 14981240]
  4. Front Pharmacol. 2018 Aug 06;9:841 [PMID: 30127739]
  5. Cell. 2007 Sep 7;130(5):769-74 [PMID: 17803898]
  6. Adv Drug Deliv Rev. 2001 Mar 1;46(1-3):3-26 [PMID: 11259830]
  7. Immunol Lett. 2006 Mar 15;103(2):159-66 [PMID: 16368150]
  8. Zhongguo Zhong Yao Za Zhi. 2007 Mar;32(6):476-8 [PMID: 17552147]
  9. J Chromatogr B Analyt Technol Biomed Life Sci. 2017 Sep 1;1061-1062:282-291 [PMID: 28763759]
  10. Zhongguo Zhong Yao Za Zhi. 2011 Dec;36(23):3298-301 [PMID: 22393739]
  11. J Ethnopharmacol. 2013 Jan 9;145(1):1-10 [PMID: 23142198]
  12. Contemp Clin Dent. 2015 Jan-Mar;6(1):124-7 [PMID: 25684928]
  13. Chin J Nat Med. 2014 Apr;12(4):251-8 [PMID: 24863349]
  14. Z Rheumatol. 2012 Aug;71(6):479-84 [PMID: 22777068]
  15. Int J Mol Sci. 2012;13(6):6964-82 [PMID: 22837674]
  16. Sci Rep. 2018 Jan 12;8(1):624 [PMID: 29330507]
  17. Curr Opin Pharmacol. 2003 Jun;3(3):317-22 [PMID: 12810199]
  18. Bioinformatics. 2003 Feb 12;19(3):336-44 [PMID: 12584118]
  19. Nat Biotechnol. 2007 Feb;25(2):197-206 [PMID: 17287757]
  20. J Pharm Pharm Sci. 2014;17(4):532-40 [PMID: 25579432]
  21. Bioinformatics. 2010 Sep 15;26(18):2347-8 [PMID: 20656902]
  22. Front Pharmacol. 2017 May 03;8:230 [PMID: 28515692]
  23. Mod Rheumatol. 2016;26(1):46-50 [PMID: 25995033]
  24. Rheumatology (Oxford). 2004 Apr;43(4):405-7 [PMID: 14679296]
  25. J Rheumatol. 2006 Jul;33(7):1258-65 [PMID: 16783865]
  26. Nucleic Acids Res. 2013 Jan;41(Database issue):D1089-95 [PMID: 23203875]
  27. Cytokine. 2015 Dec;76(2):527-536 [PMID: 26321413]
  28. Int J Mol Med. 2016 Nov;38(5):1507-1514 [PMID: 28026003]
  29. Int J Clin Exp Med. 2015 Sep 15;8(9):16536-42 [PMID: 26629181]
  30. Nucleic Acids Res. 2014 Jul;42(Web Server issue):W32-8 [PMID: 24792161]
  31. Bioinformatics. 2013 Jul 15;29(14):1830-1 [PMID: 23740750]
  32. Sci Rep. 2016 May 04;6:24944 [PMID: 27143508]
  33. Ann Rheum Dis. 2014 Apr;73(4):752-5 [PMID: 23887288]
  34. Nucleic Acids Res. 1999 Jan 1;27(1):29-34 [PMID: 9847135]
  35. PLoS One. 2011 Jan 06;6(1):e15939 [PMID: 21253603]
  36. Evid Based Complement Alternat Med. 2013;2013:456747 [PMID: 23653662]
  37. Arthritis Rheum. 2006 Sep;54(9):2745-56 [PMID: 16947383]
  38. J Cheminform. 2014 Apr 16;6:13 [PMID: 24735618]
  39. Int J Biochem Cell Biol. 2012 Jul;44(7):1139-52 [PMID: 22521613]

Word Cloud

Created with Highcharts 10.0.0TCMformulaRAnetworkdiseasekeyKNMSKNMSstreatmentcomplexdifferentmolecularmechanismstrategyarthritisformulasTraditionalChinesemedicinediseasesespeciallyNetworkpharmacologybasedRheumatoidarticularmodelgenemotifsignificantpredictedrheumatoidcoverageproposedpredictionmechanismscomponentscharacteristics"multi-component-multi-target-multi-pathway"obviousadvantagespreventionaspects"treatingtreatments"Howeverstillproblemsunclearsubstancebasiseffectivenessnewsystembiologypoly-pharmacologyobserveinterventiondrugsnetworkssystematicalcomprehensivelevelsuitablestudysystemschronicinflammatoryautoimmunecausingextradysfunctionsamongpatientsleadirreversiblejointdamagedisabilityleftuntreatedDanggui-Sini-decoctionDSDGuizhi-Fuzi-decoctionGFDHuangqi-Guizhi-Wuwu-DecoctionHGWDet alfoundsuccessfulcontrollingclinicalapplicationspharmacology-basedapproachestablishedthreeinferredresultsshowkepthighconsistencycorrespondingC-Tpathogenicgenesfunctionalpathwayscumulativecontributionnodesconfirmedreliabilityaccuracyvalidatedtherapy-relatedemployeddecodetreatFinallyevaluatedexperimentsvalidationprovidesmethodologicalreferenceinterpretingoptimizationcoregroupinferenceUncoveringComplexityMechanismDifferentFormulasTreatmentArthritisBasedNovelPharmacologyModel

Similar Articles

Cited By (27)